• Title/Summary/Keyword: Freeform buildings

Search Result 27, Processing Time 0.02 seconds

Diagrid Systems for Structural Design of Complex-Shaped Tall Buildings

  • Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.4
    • /
    • pp.243-250
    • /
    • 2016
  • Today's architectural design trend based on the recognition of pluralism has led to multiple design directions for all building types including tall buildings. This contemporary design trend has produced many complex-shaped tall buildings, such as twisted, tilted, tapered and freeform towers. Among many different structural systems developed for tall buildings, the diagrid system, with its powerful structural rationale and distinguished aesthetic potential, is one of the most widely used systems for today's tall buildings. This paper studies structural performance of diagrid systems employed for complex-shaped tall buildings. Twisted, tilted, tapered and freeform tall buildings are designed with diagrid structures, and their structural performances are investigated. For the twisted diagrid study, the buildings are twisted up to 3 degrees per floor. In the tilted diagrid study, the angles of tilting range from 0 to 13 degrees. The impact of eccentricity is investigated for gravity as well as lateral loads in tilted towers. In the study of tapered diagrid structures, the angles of tapering range from 0 to 3 degrees. In the study of freeform diagrid structures, lateral stiffness of freeform diagrids is evaluated depending on the degree of fluctuation of free form. The freeform floor plans fluctuate from plus/minus 1.5 meter to plus/minus 4.5 meter boundaries of the original square floor plan. Parametric structural models are generated using appropriate computer programs and the models are exported to structural engineering software for design, analyses and comparative studies.

Review of Freeform Buildings using the Digital Fabrication (디지털 패브리케이션을 활용한 비정형 건축물의 시공공법 고찰)

  • Kim, Sung-Jin;Park, Young-Mi;Park, Sung-Jin;Park, Ki-Hong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.175-176
    • /
    • 2015
  • Starting from Guggenheim Bilbao Museum in 1997, it has been increased steadily that complex geometry buildings using digital designs and construction process. Since 2010, the domestic Freeform design has been widely used for buildings such as Dongdaemoon Design Plaza, Seoul City Hall, Tri-Bowl, and etc. But there are many defects such as the increased cost and period of construction, and the declined quality of construction because of the lack of optimized method and engineering experiences. Therefore, this study has an effort to review case study of the recent freeform buildings and construction methods using digital fabrications. And this study proposed the improve method for the construction quality for freeform buildings.

  • PDF

Analysis of surface design and panel optionsfor freeform building

  • Min Gyu Park;Han Guk Ryu
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.553-557
    • /
    • 2013
  • Roof and exterior wall are designed and constructed in a manner that prevents the accumulation of water within the wall and roof assembly in the formal building. However, in a freeform building there is no clear distinction between exterior wall and roof. In other words, the exterior walls and roof systems of the freeform building are integrated as a surface, unlike the formal building envelope. Therefore, freeform architecture needs a systemized envelope design method to perform functions of exterior wall and roof. However, in many cases, construction methods for roof and exterior wall are applied to freeform buildings without necessary alterations, which lead to incomplete design, leakage, cracks and other problems. Freeform architecture is thus designed and constructed differently from formal buildings. In order to more easily and inexpensively actualize freeform architecture, Building Information Modeling (hereinafter referred to as BIM) has recently been applied in the construction industry. The studies and case analysis are not sufficient to identify the implications and contributions of freeform buildings in future similar projects. Therefore, this research will study design and construction methods for freeform surfaces. This study attempts to analyze the pros and cons of each method for the concrete surface frame, and then presents the panel options for envelope system of the freeform architecture.

  • PDF

Manufacturing Technology of Freeform Concrete Segments using Rod Type Mold (Rod Type Mold를 이용한 비정형 콘크리트 부재 생산기술)

  • Kim, Gyeongju;Lee, Donghoon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.64-65
    • /
    • 2014
  • Recently freeform buildings which are free from simple shape are implemented depending on improvement of construction method. However, freeform buildings are spent more time and cost to materialize than typical form. Because molds for production of freeform shape cannot be reused. For these reasons, low productivity, delay of construction schedule and budget overflow are occurred. Thus, technology of molds need to be developed for manufacturing of freeform concrete segments. The objective of this study is manufacturing of freeform concrete segments using rod type mold. This technology can implement not only application to various shape but also mass production. Thus, problems of construction period, productivity and cost can be solved. After this study, productivity analysis should be continued through the field application.

  • PDF

A Study on Evaluation Index of the Panelizing Optimization for Architectural Freeform Surfaces (비정형 파라메트릭 건축부재형성 및 BIM 데이터 변환 프로세스 모델에 관한 연구)

  • Ryu, Jeong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.287-294
    • /
    • 2017
  • BIM technology has been used in the domestic AEC field since the middle 2000s. BIM has proved its worth in cutting-edge buildings, mega-buildings and freeform buildings in particular. Many freeform buildings could not be completed due to the low level of construction technique. However, many successful cases emerged after adopting digital technology, including BIM which encouraged architects to challenge freeform designs. The modeling software that can generate the freeform shape are not usually able to build the efficient BIM data type in the AEC industry. In this study a process model of the parametric freeform construction member generation and conversion to BIM data is shown and the prototype system is demonstrated.

Case Study of Concrete Surface Design and Construction Method for Freeform Building Based on BIM -Focused on Tri-Bowl, Korea-

  • Ryu, Han-Guk;Kim, Sung-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.347-357
    • /
    • 2012
  • While it is generally possible to install curved panels manufactured in a factory within the permitted error range on an irregular surface frame of concrete or steel, it is difficult and expensive. Freeform architecture is thus designed and constructed differently from formal buildings. In order to more easily and inexpensively actualize freeform architecture, Building Information Modeling (hereinafter referred to as BIM) has recently been applied in the construction industry. However, the related research and case analyses are not sufficient to identify the implications and contributions of freeform buildings in future similar projects. Therefore, this research will study design and construction methods for freeform surfaces, particular the concrete surface frame of freeform buildings based on BIM, focused on the Tri-Bowl project. This study attempts to analyze the pros and cons of each method for the concrete surface frame of the Tri-Bowl, and then presents the lessons learned and implications related to the design and construction process of the freeform architecture. Several implications for design and construction of concrete surface frame of the freeform building, the Tri-Bowl, are found. The first is that manufacturing and installation of a curved concrete frame is precisely performed based on the exact numerical values of materials and installation made using BIM 3D technologies, such as CATIA and Rhino. The second is that close and continuous collaboration among the different participants in the construction of the Tri-Bowl allowed them to cope with virtual conditions. The third is that design and construction processes have changed, and high quality of the surface frame of a freeform building is required.

Development of Dry Roof Construction Method Using Double Skin Roof System (이중 지붕 시스템을 활용한 건식 지붕 공법 개발)

  • Kim, Sung-Jin;Kim, Chung-Shik;Ryu, Han-Guk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.256-257
    • /
    • 2013
  • Roof and exterior wall of general formal buildings are designed and constructed through design focused exterior wall system and drainage and waterproof roof system. However, there are no classification of exterior wall and roof in freeform buildings and they are integrated as a surface of freeform buildings. Therefore it is necessary to develop the dry roof construction method using double skin roof system satisfying the design and function of the envelope. In this study, we have an effort to develop construction method of double-skin roof system using metal panel and PV.

  • PDF

A Study on Classification of the Panelizing for Architectural Freeform Surfaces and the Optimization of Panelizing (비정형 건축곡면 패널분할과 최적화 유형 분류에 관한 연구)

  • Ryu, Jeong-Won;Moon, JunSik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4616-4626
    • /
    • 2013
  • Freeform buildings have become the main trend that reflects complex and diverse nature of the society with the progress on the digital technology. Therefore, the demands of the researches about architectural freeform surfaces have increased rapidly over the past few years. As the fundamental research for the successful construction of the freeform buildings, this study focuses on the definition of terms, and the classification of curved-form, the methods of panelizing, and the optimization of panelizing through an integrated perspective.

Unit Module Construction Method for Freeform Facade (비정형 파사드의 유닛 모듈 시공 공법 개발)

  • Kim, Sung-Jin;Park, Sung-Jin;Park, Young-Mi;Ryu, Han-Guk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.220-221
    • /
    • 2013
  • Exterior walls are designed and constructed through design focused exterior wall system. Nowadays, freeform facade design has been changing according to material, form and function of the exterior wall system. Especially, curtain wall facade system is designed and manufactured using solar shading faces. However, the traditional method have a lot of difficulties in the currently performing technology for curtain wall facade. It is important to make the freeform facade components that integrated as a surface of freeform buildings. Therefore it is necessary to develop unit module construction method for freeform facade.

  • PDF

Analysis of influence factors on panelizing of free-form buildings (비정형 패널 분할 시 영향요인 분석)

  • Lee, Donghoon;Lim, Jeeyoung;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.126-127
    • /
    • 2015
  • New technologies using a CNC machine to reduce the production cost of free-form buildings are being developed. To produce free-form members with such technologies, a vast free form building should be first divided into multiple panels that can be produced. Considering the curved surface of free-form buildings, the shape and size of divided freeform panels vary, which will lead to a great deal of errors. Currently, the engineers and designers complete the panelizing work through trials and errors even in large-scale projects, which results in increased construction duration and cost. Thus, it is necessary to develop a freeform panelizing technology to maximize the economic effects of free-form concrete member production technology. The purpose of the study is to analyze influence factors on panelizing of free-form buildings, which is a preceding research for development of a panelizing technology. The influence factors drawn will provide a core basis for development of panelizing technologies for free-form buildings.

  • PDF