• Title/Summary/Keyword: Free-form building

Search Result 116, Processing Time 0.025 seconds

Development of the Preliminary Cost Estimate Method for the Free-Form Building Facade Trade in Conjunction with the Panel Optimization Algorithm Process (곡면 최적화 알고리즘을 활용한 비정형 건축물 외장공사비 개산견적에 관한 연구)

  • Lim, Jang Sik;Ock, Jong Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.4
    • /
    • pp.95-106
    • /
    • 2014
  • The outer surfaces of free form buildings contain panels with two-directional curvatures. To construct these panels, complex geometric surfaces should be divided into forms and sizes that can be manufactured and constructed efficiently. Because the bigger the curvatures of these panel, the more expensive the construction costs, these complex curvatures should go through optimal process of reinterpretation to minimize the curved surfaces with complex two-directional curvatures, which is called panel optimization. Small construction and design companies have trouble in calculating even rough estimate and cannot adjust expected construction cost of the panels based on comparison of design alternatives in conjunction with panel optimization process due to lack of knowledge and experience. This study conducts the research that can support designers' cost decision-making in the design stage of the free form buildings with respect to the panel optimization process. A 3D commercial application specialized to modeling free form shapes is used for the purpose.

A Production-Installation Simulation Model of Free-Form Concrete Panels

  • Lim, Jeeyoung;Lee, Donghoon;Na, Youngju;Lim, Chaeyeon;Kim, Sunkuk
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.401-404
    • /
    • 2015
  • Demand on free-form buildings is gradually increasing, yet owing to the difficulty of production-installation work, several problems occur in the construction phase upon construction of a building, including the increased cost and construction duration, and reduced constructibility. To solve these problems, a techonology to produce FCP using a CNC(Computerized Numeric Control) machine is developed. The technology is that the information of designed free-form buildings to the CNC machine is transferred, and the transferred information is used for RTM(Rod-Type Mold, the mold shaped by back-up rods) and PCM(Phase Change Material) shaping, and the shaped RTM and PCM have the role of molds to produce FCP. Construction duration and project cost are limited in building sites, so the efficiency of processes like production-installation of FCP for application of the technology is significant. Since it is almost impossible to change the production-installation process at the construction phase when they are established, process should be deliberately decided. Therefore, the purpose of the study is to propose a production-installation simulation model of free-form concrete panels, in aspect of PCM. This paper is establishing the process for production-installation of FCP, estimating time required by each construction type and proposing a time simulation model that changes according to various constraints based on the analyses. With the time simulation model, it will be possible to build a cost model and to review the optimal construction duration and project cost.

  • PDF

Development on Full Drop Type Aluminium Form System (완전 드롭형 알폼 시스템 개발)

  • Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.14-15
    • /
    • 2021
  • Even though the Al. form system, which was developed to replace the Euro-form, has been used as the slab lower formwork for almost all concrete structures based on the light weight and high conversion rate, the low-noise Drop method has been developed and used in order to overcome the limitations of the Al. Form system such as noise pollution and safety accidents caused by free fall during the demolding. However, as the low-noise drop method is still insufficient, Safety Full Drop Al. Form method is expected to be in the spotlight in the construction market based on its excellent advantages compared to the developed methods. In addition, we plan to conduct research to further contribute to securing the quality of the overall structure through continuous improvement and supplementation by introducing an automation system to the very construction method.

  • PDF

Computational study of the wind load on a free-form complex thin shell structure

  • Rodrigues, A. Moret;Tome, Ana;Gomes, M. Gloria
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.177-193
    • /
    • 2017
  • The accelerated development of new materials, technologies and construction processes, in parallel with advances in computational algorithms and ever growing computational power, is leading to more daring and innovative architectural and structural designs. The search for non-regular building shapes and slender structures, as alternative to the traditional architectural forms that have been prevailing in the building sector, poses important engineering challenges in the assessment of the strength and mechanical stability of non-conventional structures and systems, namely against highly variable actions as wind and seismic forces. In case of complex structures, laboratory experiments are a widely used methodology for strength assessment and loading characterization. Nevertheless, powerful numerical tools providing reliable results are also available today and able to compete with the experimental approach. In this paper the wind action on a free-form complex thin shell is investigated through 3D-CFD simulation in terms of the pressure coefficients and global forces generated. All the modelling aspects and calibrating process are described. The results obtained showed that the CFD technique is effective in the study of the wind effects on complex-shaped structures.

Flexural free vibration of cantilevered structures of variable stiffness and mass

  • Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.243-256
    • /
    • 1999
  • Using appropriate transformations, the differential equation for flexural free vibration of a cantilever bar with variably distributed mass and stiffness is reduced to a Bessel's equation or an ordinary differential equation with constant coefficients by selecting suitable expressions, such as power functions and exponential functions, for the distributions of stiffness and mass. The general solutions for flexural free vibration of one-step bar with variable cross-section are derived and used to obtain the frequency equation of multi-step cantilever bars. The new exact approach is presented which combines the transfer matrix method and closed form solutions of one step bars. Two numerical examples demonstrate that the calculated natural frequencies and mode shapes of a 27-storey building and a television transmission tower are in good agreement with the corresponding experimental data. It is also shown through the numerical examples that the selected expressions are suitable for describing the distributions of stiffness and mass of typical tall buildings and high-rise structures.

Study on Mock-up Construction Example of Free-Form Building Facade using External UHPC Panels - Focused on the Construction of Busan Opera House - (UHPC 외장패널을 활용한 비정형건축물 외장패널의 목업 시공사례에 대한 연구 - 부산 오페라 하우스 신축 공사 -)

  • Kim, Tae-Ik;Yoon, Ju-Yong;Choi, Byung-Keol;Park, Yong-Kyu;Yoon, Gi-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.187-188
    • /
    • 2021
  • In the case of the Busan North Port, where the Busan Opera House is located, it is an environment exposed to various external deterioration factors such as frequent strong winds, seawater and salty winds, and an exterior material using UHPC (Ultra High Performance Concrete), a highly durable exterior material as a solution to this. Has been adopted. in this study, an economical production and construction direction was reviewed by applying UHPC to the exterior panels of atypical buildings that cannot cope with GFRC, metal, and glass, which are the main exterior finishing materials applied so far. When steel fibers are used, structural performance may be better than organic fibers, but due to environmental factors in Busan, corrosion due to exposure to steel fibers or problems with safety management after construction and completion may occur. Therefore, the site used the newly developed SACF fiber. Facade design of atypical buildings, which will increase in the future, is an important part, and the scope of use of UHPC panels is expected to increase in the future as design trends and demand for high durability increase.

  • PDF

Evaluation of the Compressive Strength and Maturity According to Form Types in Low Temperature (저온양생하에서 거푸집 종류에 따른 콘크리트의 압축강도와 적산온도 특성 평가)

  • Choi, Si-Hyun;Mun, Young-Bum;Kim, Jae-Young;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.5-6
    • /
    • 2016
  • When concrete exposed to low temperatures, the free water in the concrete is freeze. If the pressure developed exceeds the tensile strength of the concrete, the cavity will dilate and rupture. It cause expansion and cracking, scaling and crumbling of the concrete. In this study, to prevent such damage, five different types of form were used. Concrete was poured into each form, cured for 7 days at temperature of -10℃. To measure the temperature history, two thermocouples were installed on each of the inside and outside. And to measure the compressive strength, collected core from each form. The maturity is formed by temperature history. The maturity and the compressive strength has a correlation.

  • PDF

Requirement Analysis Study for Development of 3D Printing Concrete Nozzle for FCP Manufacturing (FCP 제작용 3D 프린팅 콘크리트 노즐 개발을 위한 요구사항 분석연구)

  • Youn, Jong-Young;Kim, Ji-Hye;Kim, Hye-Kwon;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.65-66
    • /
    • 2022
  • In the construction industry, interest in technologies such as 3D Construction Printing (3DCP) is increasing, and research is being conducted continuously. In the case of atypical architecture, different shapes must be implemented, and the introduction of 3D printing technology is intended to solve it. Our researchers are conducting research to produce Free-form Concrete Panel (FCP). It automatically manufactures the FCP's formwork without any error with the design shape. At this time, the concrete nozzle based on the 3D printing technology is developed and the concrete is precisely extruded into the manufactured form to prevent the deformation of the formwork that can occur due to the concrete load. Therefore, in this study, the requirements for the development of 3D printing concrete nozzles for FCP manufacturing are analyzed. Based on the analyzed requirements, the first nozzle was developed. Such equipment is easy to shorten construction period and cost reduction in the atypical construction field, and is expected to be utilized as basic 3D printing equipment.

  • PDF

A Study on Application of Universal Design in School Building (학교건축의 유니버설디자인 적용에 관한 연구)

  • Seong, Ki-Chang
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.4
    • /
    • pp.59-67
    • /
    • 2018
  • Purpose: The concept of the Barrier-Free Design has steadily expanded into a basic principle of design, which can provide safe and convenient lives not only limited to the disables, elders, and pregnant women, but also to all members of the society. This is what we now know as the Universal Design. In other words, Barrier-Free Design for all is Architectural Approach of Universal Design. Thus, as a future-oriented alternative to school facilities according to social change, this study suggests basic direction of school building planning and concept of universal design considering school facilities characteristics. Methods: The characteristics of school facilities are understood from the perspective of Universal Design. In addition, a survey is conducted to identify the current state of school facilities. Result: Findings from this study are as follows. First, Universal Design of School Building is an integrated characteristic. Integration is intended to create and manage an integrated environment instead of an individual and one-time approach to installation and maintenance of convenience facilities. Second, It is a flexible characteristic to be sustainable. In other words, they aim to be selectable to respond to change. Third, It is a characteristic of accumulation of outstanding cases. This means that not only individual schools but also entire school spaces will be applied to Universal Design to form a virtuous circle of environment improvement. Implications: The results of this study may serve as a basic concept in the design of school buildings.