• Title/Summary/Keyword: Free-Stream Temperature

Search Result 49, Processing Time 0.027 seconds

Analysis of forced convective laminar film boiling heat transfer on vertical surface (垂直平板에서의 强制對流 膜沸騰 流動의 熱傳達解析)

  • 이규식;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.425-436
    • /
    • 1987
  • Accurate predictions of heat transfer coefficient of vertical laminar film-boiling are very important in many engineering applications. There are many predictions, however they are not exact as yet, since they have used the assumption of constant thermodynamic properties in the analysis. In this paper, heat transfer of vertical film boiling was analysized by Runnge Kutta method using veriable thermodynamic properties. 1/4 interval method was exployed for the prediction of unknown wall boundary condition. Numerical computations were performed with varying the wall temperature and the free stream velocity of liquid. Results show that assumption of constant thermodynamic properties induced considerable error in predicting the heat transfer coefficient, friction factor, film thickness, and critical length for transition to turbulent flow. Comparision of the predicted heat transfer coefficient of present analysis with that from Bromley's correlation shows that the use of general latent heat in Bromely equation instead of modified latent heat is more desireable since it makes the coefficient of Bromley equation into constant.

Prediction of Glaze Ice Accretion on 2D Airfoil (2차원 에어포일의 유리얼음 형상 예측 코드 개발)

  • Son, Chan-Kyu;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.747-757
    • /
    • 2010
  • The ice accreted on the airfoil is one of the critical drivers that causes the degradation of aerodynamic performance as well as aircraft accidents. Hence, an efficient numerical code to predict the accreted ice shape is crucial for the successful design of de-icing and anti-icing devices. To this end, a numerical code has been developed for the prediction of glaze ice accretion shape on 2D airfoil. Constant Source-Doublet method is used for the purpose of computational efficiency and heat transfer in the icing process is accounted for by Messinger model. The computational results are thoroughly compared against available experiments and other computation codes such as LEWICE and TRAJICE. The direction and thickness of ice horn are shown to yield similar results compared to the experiments and other codes. In addition, the effects of various parameters - temperature, free-stream velocity, liquid water contents, and droplet diameter - on the ice shape are systematically analyzed through parametric studies.

Heat Transfer Analysis around Transport Cask under Transport Hood (사용후핵연료 운반용기 덮개 내부 열전달 해석)

  • Lee, Dong-Gyu;Park, Jae-Ho;Jung, In-Su;Kim, Tae-Man;Yoon, Jeong-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.161-167
    • /
    • 2011
  • In case that the maximum temperature of any surface readily accessible during transport of a spent nuclear fuel (SNF) transport cask exceeds $85^{\circ}C$ in the absence of insolation under the ambient temperature of $38^{\circ}C$, personnel barriers or transport hood shall be used to prevent people from casual contact with the transport cask surface. Usually the air temperature within the hood and the hood surface temperature are calculated and further utilized as boundary conditions(free stream temperature and external radiation temperature) for thermal evaluation under normal conditions of transport. In this study, these temperatures are derived using the analytical method based on the heat transfer mechanism around the transport cask under transport hood assuming the thermal equilibrium. By comparing the analytical solutions with the results from the detailed calculations with CFD-computer-code FLUENT 12.1 it is verified that the analytical method is still efficient tool to estimate the temperatures and these temperatures can be further used as boundary conditions for thermal evaluation under normal conditions of transport.

Evaluation on the nutrient concentration changes along the flow path of a free surface flow constructed wetland in agricultural area (농업지역에 조성된 자유수면형 인공습지의 유로에 따른 영양염류의 변화 평가)

  • Mercado, Jean Margaret R.;Maniquiz-Redillas, Marla C.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.215-222
    • /
    • 2013
  • In this study, the nutrient concentration changes along the hydrologic flow path of a free water surface flow constructed wetland (CW) treating agricultural stream runoff was investigated. Dry sampling was performed from April 2009 to November 2011 at five locations representing each treatment units of the CW. Grab water samples were analyzed for nitrogen forms such as total nitrogen (TN), total Kjeldahl nitrogen, nitrate, and ammonium; and phosphorus forms including total phosphorus (TP) and phosphate. Findings revealed that the physical properties such as temperature, dissolved oxygen and pH affected the TP retention in the CW. High nutrient reduction was observed after passing the first sedimentation zone indicating the importance of settling process in the retention of nutrients. However, it was until the 85% of the length of the CW where nutrient retention was greatest indicating the deposition of nutrients at the alternating shallow and deep marshes. TN and TP concentration seemed to increase at the final sedimentation zone (FSZ) suggesting a possible nutrient source in this segment of the CW. It was therefore recommended to reduce or possibly remove the FSZ in the CW for an optimum performance, smaller spatial allocation and lesser construction expenses for similar systems.

Abundance and Biomass of Macroinvertebrate Association in a First Order Stream at Mt. Jumbong, Kangwon-do (점봉산의 한 일차하천에 서식하는 대형무척추동물의 풍부도와 현존량)

  • Chung, Keun
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.1-10
    • /
    • 2005
  • Macroinvertebrates from a first order stream at Mt Jumbong, Kangwon-do, was examined for their abundance and biomass. Sampling was done by using a pipe sampler (${\phi}$ 20 cm) for 11occasions (n = 5) at 4${\sim}$6 weeks intervals during November 1997 through October 1998. Water temperature and electronic conductivity of the study stream ranged $0\;{\sim}\;14^{\circ}C$ and 15${\sim}$25 ${\mu}s$/cm, respectively. During the study, 53 insect taxa and 3 non-insect taxa were collected. Annual mean number of individuals (${\pm}$1 SD) was 77741${\pm}$69232${\cdot}$m$^{-2}$ ${\cdot}$yr$^{-1}$, being high in winter (${\pm}$1 SD) (December: 171178${\pm}$130468 $m^{-2}$) and low in summer (${\pm}$ 1 SD) (June: 29872${\pm}$13078 $m^{-2}$). Non-predatory subfamilies of Chironomidae and Nemoura sp. occupied 53.3% and 21.8% of annual abundance. Annual mean biomass was 10g${\cdot}$m$^{-2}$${\cdot}$yr$^{-1}$ in ash free dry weight (AFDW), being high in late winter (February: 16 gAFDW $m^{-2}$.) and low in summer (June: 3 gAFDW $m^{-2}$). Gammarus sp. represented 39.8% of the total biomass and was followed by non-predatory subfamilies of Chironomidae (15.2%) and Hydatohylax sp. (8.5%, Limnephilidae: Trichoptera). Since the non-predatory subfamilies of chironomidae were composed of many species, Nemoura sp. was the most abundant taxon. However, Cammarus sp. was surely the most important taxon to the functional aspects of this first order stream ecosystems.

Factors Affecting Chemical Disinfection of Drinking Water

  • Lee, Yoon-jin;Nam, Sang-ho;Jun, Byong-ho;Oh, Kyoung-doo;Kim, Suk-bong;Ryu, Jae-keun;Dionysiou, Dionysios D.;Itoh, Sadahiko
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.126-131
    • /
    • 2004
  • This research sought to compare chlorine, chlorine dioxide and ozone as chemical disinfectants of drinking water, with inactivation of total coliform as the indicator. The inactivation of total coliform was tested against several variables, including the dose of disinfectant, contact time, pH, temperature and DOC. A series of batch processes were performed on water samples taken from the outlet of a settling basin in a conventional surface water treatment system that is provided with the raw water drawn from the mid-stream of the Han River. Injection of 1 mg/L of chlorine, chlorine dioxide and ozone resulted in nearly 2.4, 3.0 and 3.9 log inactivation, respectively, of total coliform at 5 min. To achieve 99.9 % the inactivation, the disinfectants were required in concentrations of 1.70, 1.00 and 0.60 mg/L for chlorine, chlorine dioxide and ozone, respectively. Bactericidal effects generally decreased as pH increased in the range of pH 6 to 9. The influence of pH change on the killing effect of chlorine dioxide was not strong, but that on ozone and free chlorine was sensitive. The activation energies of chlorine, chlorine dioxide and ozone were 36,053, 29,822 and 24,906 J/mol for coliforms with inactivation effects being shown in the lowest orders of these.

Hydro-meteorological Effects on Water Quality Variability in Paldang Reservoir, Confluent Area of the South-Han River-North-Han River-Gyeongan Stream, Korea (남·북한강과 경안천 합류 수역 팔당호의 수질 변동성에 대한 기상·수문학적 영향)

  • Hwang, Soon-Jin;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Choi, Bong-Geun;Eum, Hyun Soo;Park, Myung-Hwan;Noh, Hye Ran;Sim, Yeon Bo;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.354-374
    • /
    • 2016
  • This study explored spatiotemporal variability of water quality in correspondence with hydrometeorological factors in the five stations of Paldang Reservoir located in the Han River during 4 years from May 2012 to December 2015. Variability of basic water quality factors were largely related with seasonal fluctuations of hydrology. Temperature stratification occurred in the deep dam station, and prolonged hypoxia was observed during the draught year. Nitrogen nutrients were increased with decreasing inflow in which changing pattern of $NH_4$ reversed to $NO_3$ by the effect of treated wastewater effluent. Phosphorus increase was manifest during the period of high inflow or severe drought. Chl-a variation was reversely related with both flow change and AGP(algal growth potential) variations. Our study demonstrated that water quality variability in Paldang Reservoir was largely attributed to both natural and operational changes of inflow and outflow (including water intake) based on major pollution source of the treated wastewater (total amount of $472{\times}10^3m^3d^{-1}$) entering to the water system from watershed. In the process of water quality variability, meteorological (e.g., flood, typhoon, abnormal rainfall, scorching heat of summer) and hydrological factors (inflow and discharge) were likely to work dynamically with nutrients pulse, dilution, absorption, concentration and sedimentation. We underline comprehensive limnological study related to hydro-meteorolology to understand short- and long-term water quality variability in river-type large reservoir and suggest the necessity of P-free wastewater treatment for the effective measure of reducing pollution level of Paldang drinking water resource.

Spectral Infrared Signature Analysis of the Aircraft Exhaust Plume (항공기 배기 플룸의 파장별 IR 신호 해석)

  • Gu, Bonchan;Baek, Seung Wook;Yi, Kyung Joo;Kim, Man Young;Kim, Won Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.640-647
    • /
    • 2014
  • Infrared signature of aircraft exhaust plume is the critical factor for aircraft survivability. To improve the military aircraft survivability, the accurate prediction of infrared signature for the propulsion system is needed. The numerical analysis of thermal fluid field for nozzle inflow, free stream flow, and plume region is conducted by using the in-house code. Weighted Sum of Gray Gases Model based on Narrow Band with regrouping is adopted to calculate the spectral infrared signature emitted from aircraft exhaust plume. The accuracy and reliability of the developed code are validated in the one-dimensional band model. It is found that the infrared radiant intensity is relatively more strong in the plume through the analysis, the results show the different characteristic of the spectral infrared signature along the temperature, the partial pressure, and the species distribution. The continuous spectral radiant intensity is shown near the nozzle exit due to the emission from the nozzle wall.

Geomorphic Features of Bing-gye Valley Area(Kyongbuk Province, South Korea) -Mainly about Talus- (의성 빙계계곡 일대의 지형적 특성 -테일러스를 중심으로-)

  • Jeon, Young-Gweon
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.2
    • /
    • pp.49-64
    • /
    • 1998
  • Bing-gye valley(Kyongbuk Province, South Korea) is well known as a tourist attraction because of its meteorologic characteristics that show subzero temperature during midsummer. Also, there are some interesting geomorphic features in the valley area. Therefore, the valley is worth researching in geomorphology field. The aim of this paper is to achieve two purposes. These are to clarify geomorphic features on talus within Bing-gye valley area, and to infer the origin of Bing-gye valley. The main results are summarized as follows. 1) The formation of Bing-gye valley It would be possible to infer the following two ideas regarding the formation of Bing-gye valley. One is that the valley was formed by differential erosion of stream along fault line, and the other is that the rate of upheaval comparatively exceeded the rate of stream erosion. Especially, the latter may be associated with the fact that the width of the valley is much narrow. Judging that the fact the width of the valley is much narrow, compared with one of its upper or lower valley, it is inferred that Bing-gye valley is transverse valley. 2) The geomorphic features of talus (1) Pattern It seems to be true that the removal of matrix(finer materials) by the running water beneath the surface can result in partly collapse hollows. Taluses are tongue-shaped or cone-shaped in appearance. They are $120{\sim}200m$ in length, $30{\sim}40m$ in maximum width. and $32{\sim}33^{\circ}$ in mean slope gradient. The component blocks are mostly homogeneous in size and shape(angular), which reflect highly jointed free face produced by frost action under periglacial environment. (2) Origin On the basis of previous studies, the type of the talus is classified into rock fall talus. When considered in conjunction with the degrees of both weathering of blocks and hardness of blocks, it can be explained that the talus was formed under periglacial environment in pleistocene time. (3) The inner structure of block accumulation I recognize a three-layered structure in the talus as follows: (a) superficial layer; debris with openwork texture at the surface, 1.3m thick. (b) intermediate layer: small debris(about 5cm in diameter) with fine matrix(including humic soil), 70cm thick. (c) basal layer: over 2m beneath surface, almost pure soil horizon without debris (4) The stage of landform development Most of the blocks are now covered with lichen, and/or a mantle of weathering. It is believed that downslope movement by talus creep well explains the formation of concave slope of the talus. There is no evidence of present motion in the deposit. Judging from above-mentioned facts, the talus of this study area appears to be inactive and fossil landform.

  • PDF