• 제목/요약/키워드: Free wake

검색결과 198건 처리시간 0.037초

셸리의 Ode to the West Wind에 나타난 서풍의 실체 (The real nature of the West Wind in Shelley's Ode to the West Wind)

  • 전웅주
    • 영어어문교육
    • /
    • 제5호
    • /
    • pp.259-272
    • /
    • 1999
  • The real nature of the west wind in Shelley's Ode to the West Wind is the divine providence which influences all things in this world- that is, whether they are on land, in the sky, or in the sea. The divine providence is the manifestation of something beyond the present and tangibel object. In the first stanza, the real nature of the west wind in this poem is the wild wind, the breath of Autumn's being, the unseen presence, the azure sister of the Spring, a Destroyer, a Preserver, the winged seed, a creator, a philosopher, a poet, Shelley, and the wild spirit moving everywhere. In the second stanza, the real nature of the west wind in this poem is cloud, the angel of rain and lightning, fierce Maenad, the approaching storm, the congregated might, the black rain, the fire, hail, solid atmosphere, the tremendous power of revolutionary change, and the power that influences all things in the sky. In the third stanza, the real nature of the west wind in this poem is the voice that makes the oozy woods which wear the sapless foliage of the Atlantic, and the power makes the blue Mediterranean wake from his summer dream. the fit medium of expression which Shelley's soul was seeking for, Shelley's passion, Shelley's partner, Shelley's co-worker, and a strong presence which influences in the sea. In the fourth stanza, the real nature of the west wind in this poem is the mightest presence, the power, the strength, the free presence, the uncontrollable, the wanderer over heaven, a vision, the tameless, the swift, the proud and the God who can save Shelley form the heavy weight of hours and lift Shelley as a wave a leaf, a cloud. In the fifth stanza, the real nature of the west wind in this poem is the mighty harmony, the fierce Spirit, Shelley's spirit, the impetuous spirit, incanation of this verse, spark, the trumpet of a prophecy, the Providence which can make the Winter depart and call Spring, and the prophet. To conclude, the real nature of the west wind in this poem is Shelley's accumulated insight that he visulize his impulse of revolutionary thought.

  • PDF

정지 및 저속 하강 비행하는 헬리콥터 로터의 소음 해석 및 검증 (Validation of Rotor Aeroacoustic Noise in Hovering and Low Speed Descent Flight)

  • 유영현;정성남
    • 한국항공우주학회지
    • /
    • 제43권6호
    • /
    • pp.516-525
    • /
    • 2015
  • 본 연구에서는 정지 비행과 저속 하강 비행하는 회전익기 로터에 대한 소음을 예측하고 실험값과 비교하여 검증하였다. Ffowcs Williams-Hawkings 방정식을 이용한 소음압 예측 프로그램을 개발하였다. 해석 결과의 검증을 위해서 2가지 풍동 시험 결과를 이용하였다. Boeing 360 모델 로터를 이용하여 정지 비행 조건에서의 저차 주파수 대역의 소음압을 검증하였고, HART II 로터를 이용하여 저속 하강 비행 조건의 중간 주파수 대역의 BVI 소음을 검증하였다. 하중 소음을 예측하기 위해서 정지비행 조건에서는 자유후류기법을 통한 공력계수를 이용하였고, 저속 하강 비행 조건에서는 CFD/CSD 연계해석 결과를 이용하였다. 소음해석 결과 저차 주파수 대역의 소음압과 중간 주파수 대역의 BVI 소음압을 비교적 잘 예측하는 것을 확인하였다. BVI 소음압은 FFT 해석을 통하여 소음 방사 지도를 그려 실험결과와 비교하였다. 비교 결과 시험결과와 비교적 유사하게 예측하는 것을 확인하였다.

대형 유조선의 저항 및 추진성능에 대한 축척효과의 수치적 연구 (Computational Study of the Scale Effect on Resistance and Propulsion Performance of VLCC)

  • 최정은;김정훈;이홍기
    • 대한조선학회논문집
    • /
    • 제48권3호
    • /
    • pp.222-232
    • /
    • 2011
  • This article examines the scale effect of the flow characteristics, resistance and propulsion performance on a 317k VLCC. The turbulent flows around a ship in both towing and self-propulsion conditions are analyzed by solving the Reynolds-averaged Navier-Stokes equation together with the application of Reynolds stress turbulence model. The computations are carried out in both model- and full-scale. A double-body model is applied for the treatment of free surface. An asymmetric body-force propeller is used. The speed performances including resistance and propulsion factors are obtained from two kinds of methods. One is to analyze the computational results in model scale through the revised ITTC' 78 method. The other is directly to analyze the computational results in full scale. Based on the computational predictions, scale effects of the resistance and the self-propulsion factors including form factor, thrust deduction fraction, effective wake fraction and various efficiencies are investigated. Scale effects of the streamline pattern, hull pressure and local flow characteristics including x-constant sections, propeller and center plane, and transom region are also investigated. This study presents a useful tool to hull-form and propeller designers, and towing-tank experimenters to take the scale effect into consideration.

Comparative study of prediction methods of power increase and propulsive performances in regular head short waves of KVLCC2 using CFD

  • Lee, Cheol-Min;Seo, Jin-Hyeok;Yu, Jin-Won;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.883-898
    • /
    • 2019
  • This paper employs computational tools to predict power increase (or speed loss) and propulsion performances in waves of KVLCC2. Two-phase unsteady Reynolds averaged Navier-Stokes equations have been solved using finite volume method; and a realizable k-ε model has been applied for the turbulent closure. The free-surface is obtained by solving a VOF equation. Sliding mesh method is applied to simulate the flow around an operating propeller. Towing and self-propulsion computations in calm water are carried out to obtain the towing force, propeller rotating speed, thrust and torque at the self-propulsion point. Towing computations in waves are performed to obtain the added resistance. The regular short head waves of λ/LPP = 0.6 with 4 wave steepness of H/λ = 0.007, 0.017, 0.023 and 0.033 are taken into account. Four methods to predict speed-power relationship in waves are discussed; Taylor expansion, direct powering, load variation, resistance and thrust identity methods. In the load variation method, the revised ITTC-78 method based on the 'thrust identity' is utilized to predict propulsive performances in full scale. The propulsion performances in waves including propeller rotating speed, thrust, torque, thrust deduction and wake fraction, propeller advance coefficient, hull, propeller open water, relative rotative and propulsive efficiencies, and delivered power are investigated.

상반회전 프로펠러의 날개수 조합에 따른 축기진력 연구 (Numerical Study on the Effects of Combination of Blade Number for Shaft Forces and Moments of Contra-Rotating Propeller)

  • 백광준;이진석;이태구;;박형길;서종수
    • 대한조선학회논문집
    • /
    • 제50권5호
    • /
    • pp.282-290
    • /
    • 2013
  • The effects of the combination of blade number for forward and after propeller on the propeller shaft forces of a contra-rotating propeller (CRP) system are presented in the paper. The research is performed through the numerical simulations based on the Reynolds-Averaged Navier-Stokes equations (RANS). The simulation results of the present method in open water condition are validated comparing with the experimental data as well as the other numerical simulation results based on the potential method for 4-0-4 CRP (3686+3687A) and 4-0-5 CRP (3686+3849) of DTNSRDC. Two sets of CRP are designed and simulated to study the effect of the combination of blade number in behind-hull condition. One set consists of 3-blade and 4-blade, while the other is 4-blade and 4-blade. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. From the simulation results, the fluctuations of axial force and moment are dominant in the case of same blade numbers for forward and after propellers, whereas the fluctuations of horizontal and vertical forces and moments are very large in the case of different blade numbers.

새로운 단면을 이용한 고효율 프로펠러 설계법 (A Propeller Design Method with New Blade Sections)

  • 이진태;이창섭;김문찬;안종우;김호충
    • 대한조선학회지
    • /
    • 제26권3호
    • /
    • pp.29-40
    • /
    • 1989
  • 고효율 및 캐비테이션 특성이 우수한 프로펠러 날개단면을 개발하기 위한 일련의 설계 제작 시험 및 해석과정을 기술하였다. 여러 날개단면의 양력-항력곡선과 캐비테이션 특징을 비교하기 위하여 11개의 2차원 날개 단면을 설계 제작 시험하였다. 개발된 단면(KH18 단면)은 양력-항력 곡선과 캐비티 초생 곡선에서 기존 단면에 비하여 폭이 넓기 때문에 불균일한 선미후류에서 작동하는 프로펠러의 날개 단면으로서 적합하리라 생각된다. 개방단면을 사용한 프로펠러 설계법을 제시하였다. 코오드 방향 부하분포 형상이 프로펠로 성능에 미치는 영향을 고찰하기 위하여 3가지 기준 부하 형상에 대한 프로펠러를 각각 설계하였다. 또한 날개단면이 프로펠러 성능에 미치는 영향을 비교하기 위하여 기존 날개단면만을 사용한 프로펠러를 2개 설계하였다.

  • PDF

균일 유동장내 튜브 배열의 유동관련 진동에 관한 연구 (I) (A Study on Flow-Induces Vibration of Tube Array in Uniform Crossflow(I))

  • 이기백;김봉환;양장식;김문경;장석상
    • 대한기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.924-932
    • /
    • 1992
  • 본 연구에서는 풍동내에 놓여진 탄성지지 실린더의 와유출 특성과 진동 응답 을 동시에 측정하고 분석하여 유입속도 변화에 따른 이들의 상호관계를 확인하고 아울 러 실린더가 통과하는 풍동측정부에 있는 틈새 간격변화가 와유출과 실린더의 진동특 성에 미치는 영향에 대해 조사하였다.

능동 비틀림 제어기법을 이용한 복합재료 로터 블레이드의 진동 억제 (Vibration Reduction of Composite Helicopter Blades using Active Twist Control Concept)

  • ;유영현;정성남
    • 한국항공우주학회지
    • /
    • 제37권2호
    • /
    • pp.139-146
    • /
    • 2009
  • 능동 비틀림 제어기법을 이용한 복합재료 로터 블레이드의 헬리콥터 진동억제에 대한 수치연구를 수행하였다. 허브에 작용하는 진동하중 억제를 위해 복합재료 블레이드의 탄성 연계와 함께 압전 소재의 전단변형 메커니즘을 이용하였다. 로터 블레이드는 표면에 압전 작동기를 부착한 박벽 상자형 단면을 갖는 복합재료 보로 모델링하였다. 회전익에 대한 지배 운동방정식은 Hamilton 원리를 이용하여 구성하였고, 공력하중은 자유후류모델을 포함하는 비정상 공력 이론을 이용하여 구했다. 다양한 탄성연계 적층과 능동 작동기를 부착한 복합재료 블레이드에 대해 허브진동 하중 특성을 고찰하였다. 수치해석 결과 최적 제어 알고리듬을 적용하여 $N_b$/rev 진동하중을 대폭 줄일 수 있음을 보였다.

Hybrid RANS and Potential Based Numerical Simulation for Self-Propulsion Performances of the Practical Container Ship

  • Kim, Jin;Kim, Kwang-Soo;Kim, Gun-Do;Park, Il-Ryong;Van, Suak-Ho
    • Journal of Ship and Ocean Technology
    • /
    • 제10권4호
    • /
    • pp.1-11
    • /
    • 2006
  • The finite volume based multi-block RANS code, WAVIS developed at MOERI is applied to the numerical self-propulsion test. WAVIS uses the cell-centered finite volume method for discretization of the governing equations. The realizable $k-{\epsilon}$ turbulence model with a wall function is employed for the turbulence closure. The free surface is captured with the two-phase level set method and body forces are used to model the effects of a propeller without resolving the detail blade flow. The propeller forces are obtained using an unsteady lifting surface method based on potential flow theory. The numerical procedure followed the self-propulsion model experiment based on the 1978 ITTC performance prediction method. The self-propulsion point is obtained iteratively through balancing the propeller thrust, the ship hull resistance and towing force that is correction for Reynolds number difference between the model and full scale. The unsteady lifting surface code is also iterated until the propeller induced velocity is converged in order to obtain the propeller force. The self-propulsion characteristics such as thrust deduction, wake fraction, propeller efficiency, and hull efficiency are compared with the experimental data of the practical container ship. The present paper shows that hybrid RANS and potential flow based numerical method is promising to predict the self-propulsion parameters of practical ships as a useful tool for the hull form and propeller design.

Dedicated preparation for in situ transmission electron microscope tensile testing of exfoliated graphene

  • Kim, Kangsik;Yoon, Jong Chan;Kim, Jaemin;Kim, Jung Hwa;Lee, Suk Woo;Yoon, Aram;Lee, Zonghoon
    • Applied Microscopy
    • /
    • 제49권
    • /
    • pp.3.1-3.7
    • /
    • 2019
  • Graphene, which is one of the most promising materials for its state-of-the-art applications, has received extensive attention because of its superior mechanical properties. However, there is little experimental evidence related to the mechanical properties of graphene at the atomic level because of the challenges associated with transferring atomically-thin two-dimensional (2D) materials onto microelectromechanical systems (MEMS) devices. In this study, we show successful dry transfer with a gel material of a stable, clean, and free-standing exfoliated graphene film onto a push-to-pull (PTP) device, which is a MEMS device used for uniaxial tensile testing in in situ transmission electron microscopy (TEM). Through the results of optical microscopy, Raman spectroscopy, and TEM, we demonstrate high quality exfoliated graphene on the PTP device. Finally, the stress-strain results corresponding to propagating cracks in folded graphene were simultaneously obtained during the tensile tests in TEM. The zigzag and armchair edges of graphene confirmed that the fracture occurred in association with the hexagonal lattice structure of graphene while the tensile testing. In the wake of the results, we envision the dedicated preparation and in situ TEM tensile experiments advance the understanding of the relationship between the mechanical properties and structural characteristics of 2D materials.