• Title/Summary/Keyword: Free surface wave

Search Result 532, Processing Time 0.027 seconds

Study on the Third-Order-Upwind-Difference(TOUD) for the Free-Surface Simulation (자유표면시뮬레이션의 TOUD 연구)

  • KWAG SEUNG-HYUN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.154-159
    • /
    • 2004
  • A new finite difference scheme is studied fur the simulation of free surface, surface the third derivative tenn for the wave elevation is artificially added in the the free-surface boundary condition. This study presents a comparative analysis with simulations performed by using the classical MAC method. More systematic computations are carried out by changing the submergence depth and angle of attack. Through the numerical simulation, it is found that a new numerical method becomes more efficient for the reason that the free surface elevation is reasonably developed at tire rear of trailing edge.

  • PDF

Measurement and Numerical Model for Wave Interation on Impermeable Steep Slopes (불투수성 급경사면 위의 파랑상호작용에 관한 수치모델 및 실험)

  • Kim, In-Chul;Ahn, Ik-Seong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.44-51
    • /
    • 2008
  • The planning and design of coastal structures against wave attack is required to accurately predict wave transformation, wave run-up, and fluid. particlevelocities an a slope. On tire other hand, in tire swash and surf zones of a natural beach, where coastal erosion and accretion occur at tire land-sea boundary, hydrodynamic analysis is essential. In this study, a RBREAK2 numerical model was created based on the nonlinear shallow water equation and laboratory measurements were carried out in terms of tire free surface elevations and velocities for tire cases of regular and irregular waves on 1 : 10 and 1 : 5 impermeable slopes. The data were used to evaluate tire applicability and limitations of tire RBREAK2 numerical model. The numerical mode1 could predict tire cross-shore variation of the wave profile reasonably well, but showed more accurate results for slopes that were steeper than 1 : 10. Except near tire wave crest, tire computed depth averaged velocities could represent tire measured profile below tire trough level fairly well.

An Experimental and Numerical Study on the Characteristics of Pontoon Type Breakwater Fixed Near Free Surface in Regular Wave (규칙파중 수면 근처에 고정된 상자형 방파제의 특성에 관한 연구)

  • M. Song;D.Y. Kim;H.Y. Lee;I.H. Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.38-50
    • /
    • 1998
  • In order to understand the characteristics of floating breakwaters we planned series of experimental and numerical investigations and completed the first stage which is the experiment with fred pontoons near the free surface. As controlling parameters the draft and breadth of pontoon were varied and the wave frequency and steepness were also varied. Wave transmission and forces exiled on the breakwater were experimentally investigated and compared with the results computed based on linear potential theory. Discussions made are on the effect of draft and wave length on the wave transmission and force in fixed pontoon case. The predicted and measured results show quantitatively good agreement both in forces and transmission coefficient. The effect of separation distance between two pontoons on the wave transmission and force in array case is also examined.

  • PDF

Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

  • Lee, Kyoung-Rok;Koo, Weoncheol;Kim, Moo-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.513-528
    • /
    • 2013
  • A floating Oscillating Water Column (OWC) wave energy converter, a Backward Bent Duct Buoy (BBDB), was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT) technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL) approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

SIMULATION OF RELATIVE MOTION OF FLOATING BODIES INCLUDING EFFECTS OF A FENDER AND A HAWSER (방현재와 계류삭 효과를 고려한 부유체의 상대운동 모사)

  • Shin, Sangmook
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • A developed code is applied to simulate relative motion of floating bodies in a side-by-side arrangement, including effects of a fender and a hawser. The developed code is based on the flux-difference splitting scheme for immiscible incompressible fluids and the hybrid Cartesian/immersed boundary method. To validate the developed code for free surface flows around deforming boundaries, the water wave generation is simulated, which is caused by bed movement. The computed wave profile and time histories of wave elevation are compared with other experimental and computational results. The effects of a fender and a hawser are modeled by asymmetric force acting on the floating bodies according to a relative displacement with the bounds, in which the fender and the hawser exert no force on the bodies. It has been observed that the floating body can be accelerated by a gap flow due to a phase difference caused by the free surface. Grid independency is established for the computed time history of the body velocity, based on three different size grids.

Numerical Analysis of Free Surface Flow around Blunt Bow Ship Model (뭉뚝한 선수 선형 주위 자유수면 유동 수치 해석)

  • Park, Il-Ryong;Suh, Sung-Bu;Kim, Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • This paper presents the numerical results of a simulation of the free surface flow around a blunt bow ship model and focuses on the validation of the proposed method with a brief investigation of the relation between the resistance and free surface behavior. A finite volume method based on the Reynolds Averaged Navier-Stokes (RANS) approach is used to solve the governing flow equations, where the free surface, including wave breaking,is captured by using a two-phase Level-Set (LS) method. For turbulence closure, a two equation k-${\varepsilon}$ model with the standard wall function technique is used. Finally, the numerical results are compared with the available experimental data, showing good agreement.

The Treatment of the Free-surface Boundary Conditions by Finite-Difference Midpoint-Averaging Scheme for Elastic Wave Equation Modeling (탄성파 파동 방정식 모델링에서 중간점 차분 기법을 이용한 지표 경계 조건의 처리)

  • Park, Kwon-Gyu;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.2
    • /
    • pp.61-69
    • /
    • 2000
  • The free-surface boundary conditions are persistent problem in elastic wave equation modeling by finite-difference method, which can be summarized with the degradation of the accuracy of the solution and limited stability range in Poisson's ratio. In this paper, we propose the mid-point averaging scheme as an alternative way of implementing the free-surface boundary conditions, and present the solution to Lamb's problem to verify our approach.

  • PDF

Free Surface Suction Force Acting on a Submerged Slender Body Moving Beneath a Free Surface (자유수면 밑을 전진하는 세장체에 작용하는 수면흡입력의 추정)

  • Yoon, Bum-Sang;Trung, Dam Vam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.688-698
    • /
    • 2009
  • In this paper, the steady lift force acting on a slender body moving beneath regular wave systems of arbitrary wavelengths and directions of propagation is considered. The momentum conservation theorem and the strip method are used to obtain the hydrodynamic forces acting on the body and affecting its motions on the assumption that the body is slender. In order to obtain the vertical steady force acting on it, or the free surface suction force, the second-order hydrodynamic forces caused by mutual interactions between the components of the first-order hydrodynamic forces are averaged over time. The validity of the method is tested by comparison of the calculated results with experimental data and found to be satisfactory. Through some parametric calculations performed for a typical model, some useful results are obtained as to the depth of submergence of the body, wavelengths, directions, etc.

Free-surface Boundary Condition in Time-domain Elastic Wave Modeling Using Displacement-based Finite-difference Method (시간영역 변위근사 유한차분법의 자유면 경계조건)

  • Min Dong-Joo;Yoo Hai Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.77-86
    • /
    • 2003
  • We designed a new time-domain, finite-difference, elastic wave modeling technique, based on a displacement formulation. which yields nearly correct solutions to Lamb's problem. Unlike the conventional, displacement-based, finite-difference method using a node-based grid set (where both displacements and material properties such as density and Lame constants are assigned to nodal points), in our new finite-difference method, we use a cell-based grid set (where displacements are still defined at nodal points but material properties within cells). In the case of using the cell-based grid set, stress-free conditions at the free surface are naturally described by the changes in the material properties without any additional free-surface boundary condition. Through numerical tests, we confirmed that the new second-order finite differences formulated in the cell-based grid let generate numerical solutions compatible with analytic solutions unlike the old second-order finite-differences formulated in the node-based grid set.

Numerical Simulation of Three Dimensional Free Surface Flow (3차원 자유표면 유동의 수치 시뮬레이션)

  • 강신영
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 1990
  • For the tracking of three dimensional free surface motions, a method referred to as the Volume of Fluid(VOF) algorithm is extended. In order to calculate the slope of three dimensional free surface which is the most important for the advection algorithm that decides the amount of fluid from cell to cell and for the application of free surface boundary condition, a simple method utilizing two dimensional slope informations is introduced. The extended algroithm is tested by demonstrating the simulation of a propagating sinusoidal wave through the channel whose width changes abruptly.

  • PDF