• Title/Summary/Keyword: Free fatty acid content

Search Result 538, Processing Time 0.038 seconds

Physiological Activities of wild Conyza canadensis L. Extracts (야생 망초(Conyza canadensis L) 에틸알코올 추출물의 생리활성)

  • Lee, Hee Jea;Song, Hyun Sook;Lee, Geo Lyong
    • Journal of Naturopathy
    • /
    • v.11 no.2
    • /
    • pp.109-115
    • /
    • 2022
  • Background: Studies on the existence and activation of antioxidants in the wild Erigeron canadensis are still incomplete. Purposes: The activity of antioxidant substances was studied by extracting E. canadensis with ethyl alcohol. Methods: After washing the wild turfgrass, extraction with ethyl alcohol was used to investigate the activity of antioxidant substances using various analytical instruments. Results: The highest yield ratio of the extract was 49.3%, and it varied according to temperature and ethyl alcohol ratio. The 50:50 of water to ethyl alcohol at 180℃ was the highest yield. 100% survival rate was in the untreated group and 98-100% in the experimental group at 50 ppm or more of the extract. There was no cytotoxicity at almost all concentrations. The extract of 25 ppm was suppressed by 42% in the test group. The extract of 50 ppm reduced the free fatty acid content by 15%. Cell viability was 20% at the extract concentration of 50 ppm and 24% at 100 ppm. At an extract of 500 ppm, the free oxygen scavenging ability using DPPH and ABTs was 90-98%. When the changes in the free radical scavenging activity of DPPH and ABTs were observed in three dimensions, the antioxidant activity tended to increase at 85℃ as the temperature increased. However, at 85~130℃, it showed a rather decreasing tendency as the temperature increased. Conclusions: There were antioxidants in the ethyl alcohol extract of the wild grass, there was almost no cytotoxicity and suppressed NO production, and the scavenging function of free oxygen was also high. These results provide primary data for the various natural healing uses of the extracts of the turfgrass.

Precessing of Smoked Dried and Powdered, Sardine for Instant Soup (정어리 분말수우프의 가공)

  • Oh, Kwang-Soo;Chung, Bu-Kil;Kim, Myung-Chan;Sung, Nak-Ju;Lee, Eung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.2
    • /
    • pp.149-157
    • /
    • 1988
  • This study was carried out to prepare the flavoring substance using sardine for instant soup, and to examine the taste compounds and storage stability of the product. In preparation of product, raw sardine are gutted, boiled for 10 minutes and smoked 3 times to $9{\sim}10%$ moisture content at $80^{\circ}C$ for 8 hours. The smoked-dried sardine meat were followed to be 50 mesh of particle size. The powdered-dried sardine were mixed 4.0% sugar, 20.0% table salt, 3.0% monosodium glutamate, 0.2% black pepper, 0.2% garlic powder and 0.2% onion powder, Finally the powdered instant soup product were vacuum packed in a laminated film(PET/A1 foil/CPP) bag, and then stored at room temperature for 120 days. The effect of smoking on enhancing flavor and on preventing lipid oxidation of product during storage were observed. From the chemical analysis and omission test, the principal taste compounds of product were IMP, 478.2mg/l00g; free amino acids such as glutamic acid, histidine, arginine, phenylalaine 3292.5mg/l00g; non-volatile organic acids such as lactic acid, ${\alpha}-ketoglutaric$ acid, 712.2mg/l00g; total creatinine 409.0mg/100g, and small amount of betaine, TMAO. Fatty acid composition of product were mainly consisted of polyenoic acids such as 20:5, 22:6, followed by saturated acids, monoenoic acid. The major fatty acid were 16:0, 16:1, 18:1, 20:5 and 22:6. From the results of sensory evaluation and chemical experiments during storage, the vacuum packed product were good condition for preserving the quality during storage for 120 days. We may conclude that the quality of present product was not inferior to that of seasoning powder of anchovy on the market, and it can be commercialized as a flavoring substance in preparing soup and broth.

  • PDF

Analysis of Chemical Components of Korean Loquat (Eriobotrya japonica Lindl.) Fruit (국내산 비파 열매의 화학적 성분 분석)

  • Lee, Boo-Yong;Park, Eun-Mi;Kim, Eun-Jeong;Choi, Hee-Don;Kim, In-Hwan;Hwang, Jin-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.428-432
    • /
    • 1996
  • The chemical components of Korean loquat (Eriobotrya japonica Lindl.) fruit were analysed. Approximate compositions of loquat flesh and seed were as follows. respectively crude lipid 0.53% and 0.83%, crude protein 0.05% and 5.27%, crude fiber 3.46% and 3.49%, crude ash 3.24% and 2.78%, carbohydrate 92.72% and 87.63% Soluble solids content, pH and acidity (citric acid) of loquat flesh juice were $12^{\circ}Bx$ by saccharometer, 4.43 and 0.18%, respectively. Free sugar compositions of loquat flesh and seed extracts $(3^{\circ}Bx)$ were as follows, respectively; fructose 0.77% and 0.31%, glucose 0.73% and 0.79%, sucrose 0.52% and 0.19%, ribose and 0.56%, Loquat flesh contained Glu 336.72 mg%, Asp 251.06 mg%, Arg 30.90 mg% and Lys 5.26 mg% Loquat seed contained Glu 448.23 mg%, Asp 335.63 mg%, lle 44.20 mg% and His 37.89 mg%, Potassium (k) contents of loquat flesh and seed were 32627.95 mg% and 28936.28 mg% in total amount of crude ash, while vitamin A and C of loquat flesh and seed were not detected. Composition of major lipid of loquat fruit seed oils fractionated by silicic acid was neutral lipids 43.78%, glycolipids 12.32% and phospholipids 43.90%, Fatty acid compositions of loquat seed lipid extracted by chloroform-methanol (2 : 1) were as follow; palmitic acid 23.72%, stearic acid 3.815, oleic acid 8.55%, linoleic acid 54.29% and linolenic acid 9.63%, Neutral lipids consist of palmitic acid 28.89, stearic acid 6.80%, oleic acid 11.07%, linoleic acid 40.67% and linolenic acid 12.58%, Glycolopids cinsist of palmitic acid 13.21%, stearic acid 4.56%, oleic acid 6.53%, linoleic acid 64.92% and linolenic aicd 10.77% Phospholipids consist of palmitic acid 30.95%, stearic acid 3.40%, oleic acid 9.09%, linoleic acid 48.45% and linolenic acid 8.10%.

  • PDF

Esterification Reaction of Animal Fat for Bio-diesel Production (바이오디젤 생산을 위한 동물성 오일의 에스테르화 반응)

  • Kim, Sung-Min;Kim, Deog-Keun;Lee, Jin-Suk;Park, Soon-Chul;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.102-110
    • /
    • 2012
  • In this study, the production of bio-diesel from animal oil by esterification and trans-esterification was investigated. There were three different extraction methods for oil extraction from raw animal fat. Heterogeneous catalysts such as Amberlyst-15 and Amberlyst BD-20 and a homogeneous catalyst such as sulfuric acid were used for esterification. Among three catalysts, the removal efficiency of Free Fatty Acid (FFA) was the highest in sulfuric acid. Response surface method was carried out to find the optimal esterification condition of sulfuric acid and methanol. After the esterification under the optimal condition, this animal fat was used for the trans-esterification. Animal oil used for trans-esterification was below 1% of FFA content and 0.09% of water content. The catalysts for trans-esterification were KOH, NaOH and $NaOCH_3$. To investigate the effects of catalyst type and amount on trans-esterification, The amount of catalyst were changed with 0.3, 0.6 and 0.9 wt%. The molar ratio of methanol/oil was changed with 4, 6, 9 and 12. The amount of catalyst was fixed to 0.8 wt%. The KOH catalyst showed the highest FAME conversion for trans- esterification, and the optimal methanol/oil weight ratio was 6. In the experiments of various catalysts and methanol molar ratios, the highest content of FAME is 96%. However, this FAME content was below Korean bio-diesel standard which is 96.5% of FAME content. After distillation, FAME content increased to 98%.

Comparison of Nutritional Compositions between Amaranth Baby-Leaves Cultivated in Korea (국내 재배 아마란스 어린잎의 영양성분 비교)

  • Jang, Hye-Lim;Yoo, Min;Nam, Jin-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.7
    • /
    • pp.980-989
    • /
    • 2016
  • In the present study, we compared and investigated the nutritional compositions of Amaranthus cruentus and Amaranthus hypochondriacus baby-leaves cultivated in Korea. Baby-leaves of two amaranthes consisted of more than 92% moisture, and A. cruentus contained a higher amount of moisture than A. hypochondriacus. Meanwhile, A. hypochondriacus contained higher levels of crude ash, crude protein, crude lipid, carbohydrates, and dietary fiber than A. cruentus. The major free sugars of the two amaranth baby-leaves were fructose and glucose. Fructose content of A. hypochondriacus was higher than that of A. cruentus, and glucose content of A. cruentus was higher than that of A. hypochondriacus. Acetic acid, malic acid, and fumaric acid were detected in two amaranth leaves, but succinic acid was not detected. Two amaranth leaves contained 17 amino acids except for methionine, proline, and tyrosine, and leaves contained the highest glutamic acid contents. In addition, A. cruentus and A. hypochondriacus leaves contained high contents of taurine and ${\gamma}$-aminobutyric acid and showed various biological activities. The major mineral and fatty acid of the two amaranth leaves were potassium and linolenic acid (C18:3), respectively. The ${\beta}$-carotene contents of A. cruentus and A. hypochondriacus leaves were $478.72{\mu}g/100g$ and $474.12{\mu}g/100g$, respectively. In vitamin B complex, $B_2$, $B_3$, and $B_5$ were detected in the two amaranth leaves whereas vitamins $B_1$, $B_6$, and $B_{12}$ were not detected. A. hypochondriacus contained higher amounts of vitamin C and E than those of A. cruentus. Overall, amaranth leaves contained high amounts of nutritional components. Therefore, amaranth leaves are expected to be useful for the development of a functional food. Moreover, these results will provide fundamental data for advancing sitological value, breeding new cultivars, and promoting leafy vegetable usage.

Optimization of Pre-treatment of Tropical Crop Oil by Sulfuric Acid and Bio-diesel Production (황산을 이용한 열대작물 오일의 전처리 반응 최적화 및 바이오디젤 생산)

  • Kim, Deog-Keun;Choi, Jong-Doo;Park, Ji-Yeon;Lee, Jin-Suk;Park, Seung-Bin;Park, Soon-Chul
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.762-767
    • /
    • 2009
  • In this study, the feasibility of using vegetable oil extracted from tropical crop seed as a biodiesel feedstock was investigated by producing biodiesel and analysing the quality parameters as a transport fuel. In order to produce biodiesel efficiently, two step reaction process(pre-treatment and transesterificaion) was required because the tropical crop oil have a high content of free fatty acids. To determine the suitable acid catalyst for the pre-esterification, three kinds of acid catalysts were tested and sulfuric acid was identified as the best catalyst. After constructing the experimental matrix based on RSM and analysing the statistical data, the optimal pre-treatment conditions were determined to be 26.7% of methanol and 0.982% of sulfuric acid. Trans-esterification experiments of the pre-esterified oil based on RSM were carried out, then discovered 1.24% of KOH catalyst and 22.76% of methanol as the optimal trans-esterification conditions. However, the quantity of KOH was higher than the previously established KOH concentration of our team. So, we carried out supplemental experiment to determine the quantity of catalyst and methanol. As a result, the optimal transesterification conditions were determined to be 0.8% of KOH and 16.13% of methanol. After trans-esterification of tropical crop oil, the produced biodiesel could meet the major quality standard specifications; 100.8% of FAME, 0.45 mgKOH/g of acid value, 0.00% of water, 0.04% of total glycerol, $4.041mm^2/s$ of kinematic viscosity(at $40^{\circ}C$).

Factors Affecting Lipid Oxidation In Full-fat Soy Flour (전지 대부분의 유지산화에 미치는 인자)

  • Kim, Chul-Jai;Lee, C.C.;Johnson, L.A.
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.732-738
    • /
    • 1991
  • Corsoy 79 soybeans were ground into 8-(coarse) and 24-mesh (fine) full-fat soy flours. From the particle size analysis, the 8-mesh full-fat soy flours were found to have larger values for geometric mean diameter and geometric standard deviation. However, the distribution moduli of coarse and fine soy flours were similar and indicated soybeans were nearly 'brittle'. Development of hydrolytic and oxidative rancidities of coarsely and finely ground full-fat soy flours were followed from grinding to 24 hrs later. No increases in peroxide value and conjugated dienes in the oil and hexanal content in the headspace of the flour were observed when the moisture was 10.7% or less. At 14.9% moisture and above, lipid oxidation increased with increased moisture content and storage time. Free fatty acid contents increased slightly at all moisture contents. However, hydrolysis did not exceed 0.06% over the moisture range of 4 to 18%, which is of little practical significance. Fine grinding increased oxidative and hydrolytic rancidities, especially at 14.9% moisture and above. these findings indicate that raw soybeans can be ground to full-fat soy flours and stored up to 24 hrs without undergoing significant lipid and flavor deterioration if the moisture content is 11% or less.

  • PDF

Comprehensive comparison of the primary and secondary metabolites and antioxidant activity of Polygoni multiflori Radix by processing methods (가공 방법에 따른 하수오의 영양성분 및 항산화 활성의 종합적인 비교)

  • Hee Yul Lee;Chung Eun Hwang;Kyung Pan Hwa;Du Yong Cho;Jea Gack Jung;Min Ju Kim;Jong Bin Jeong;Mu Yeun Jang;Kye Man Cho
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.287-298
    • /
    • 2022
  • This study investigated the changes in the physiochemical property, phytochemical content, nutritional content and antioxidant activity of Polygoni multiflori Radix by steam, aging, and fermentation. After processing Polygoni multiflori Radix (PMR), pH slightly decreased, while acidity increased (pH 5.70→4.78, acidity 0.23→0.29%). The reducing sugar content increased after aging and fermentation from 1.19 mg/g (PMR) to 1.40 (fermented PMR, FPMR), 1.30 (red PMR, RPMR), 1.53 (fermented red PMR, FRPMR), 1.99 (black PMR, BPMR), and 2.33 mg/g (fermented black PMR, FBPMR). Total phenolic content was highest in PMR (6.05 mg/g) and total flavonoids and maillard product were increased after aging and fermentation of PMR, and were the highest in BPMR (1.60 mg/g) and FBPMR (2.76 O.D.), respectively. The major phytochemical was 2,3,5,4'-tetrahydroxystilbene-2-0-α-glucoside, which were highest in PMR (64.9 mg/g) with 46.47 mg/g at FPMR, 33.94 mg/g at RPMR, 48.76 mg/g at FRPMR, 36.68 mg/g at BPMR and 34.35 mg/g at FBPMR. The main fatty acids and free amino acids were detected as palmitic acid (C16:0) and proline, respectively. Generally, 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical scavenging activities and FRAP reducing powers were shown high in PMR (39.06%, 98.32%, and 2.61 O.D. in extracts concentration 1.0 mg/mL), then were decreased after aging and fermentation.

Identification and Characterization of an Oil-degrading Yeast, Yarrowia lipolytica 180

  • Kim, Tae-Hyun;Lee, Jung-Hyun;Oh, Young-Sook;Bae, Kyung-Sook;Kim, Sang-Jin
    • Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.128-135
    • /
    • 1999
  • Among oil-degrading microorganisms isolated from oil-polluted industrial areas, one yeast strain showed high degradation activity of aliphatic hydrocarbons. From the analyses of 18S rRNA sequences, fatty acid, coenzyme Q system, G+C content of DNA, and biochemical characteristics, the strain was identified as Yarrowia lipolytica 180. Y. lipolytica 180 degraded 94% of aliphatic hydrocarbons in minimal salts medium containing 0.2% (v/v) of Arabian light crude oil within 3 days at 25$^{\circ}C$. Optimal growth conditions for temperature, pH, NaCl concentration, and crude oil concentration were 30$^{\circ}C$, pH 5-7, 1%, and 2% (v/v), respectively. Y. lipolytica 180 reduced surface tension when cultured on hydrocarbon substrates (1%, v/v), and the measured values of the surface tension were in the range of 51 to 57 dynes/cm. Both the cell free culture broth and cell debris of Y. lipolytica 180 were capable of emulsifying 2% (v/v) crude oil by itself. They were also capable of degrading crude oil (2%). The strain showed a cell surface hydrophobicity higher than 90%, which did not require hydrocarbon substrates for its induction. These results suggest that Y. lipolytica has high oil-degrading activity through its high emulsifying activity and cell hydrophobicity, and further indicate that the cell surface is responsible for the metabolism of aliphatic hydrocarbons.

  • PDF

Comparison of time course changes in blood glucose, insulin and lipids between high carbohydrate and high fat meals in healthy young women

  • Shin, Yoo-Mi;Park, Soo-Jin;Choue, Ryo-Won
    • Nutrition Research and Practice
    • /
    • v.3 no.2
    • /
    • pp.128-133
    • /
    • 2009
  • Few studies have examined short tenn responses to the different contents of carbohydrate or fat in the meal, although long tenn effects of the high fat meal have been considered as compound risk factor for metabolic disorders. The aim of this study was to investigate the postprandial changes of plasma glucose, insulin and lipids upon intakes of high carbohydrate or high fat meal in young healthy women. Subjects were randomly assigned to either the high carbohydrate meal (HCM, 75% carbohydrate, n=13) or the high fat meal (HFM, 60% fat, n=12) groups. The meals were prepared as isocaloric typical Korean menu. Blood samples were obtained prior to and 30, 60, 90, 120, 180 and 240 minute after the meal. There were no significant differences on fasting blood parameters including glucose, insulin, lipids concentrations between the groups prior to the test. The HCM had higher blood glucose and insulin concentrations, reached the peak at 30 min and maintained for 240 min compared to the HFM (P<0.05). The HFM had higher plasma triglyceride (TG) and free fatty acid (FFA) concentrations, reached the peak at 120 min and maintained for 240 min compared to the HCM (P<0.05). It is concluded that macronutrients content in the meal may be an important determinant of postprandial substrate utilization in healthy women.