• Title/Summary/Keyword: Free cooling

Search Result 264, Processing Time 0.035 seconds

The Topology Optimization of Three-dimensional Cooling Fins by the Internal Element Connectivity Parameterization Method (내부 요소 연결 매개법을 활용한 3 차원 냉각핀의 위상 최적설계)

  • Yoo, Sung-Min;Kim, Yoon-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.360-365
    • /
    • 2007
  • This work is concerned with the topology optimization of three-dimensional cooling fins or heat sinks. Motivated by earlier success of the Internal Element Connectivity Method (I-ECP) method in two-dimensional problems, the extension of I-ECP to three-dimensional problems is carried out. The main efforts were made to maintain the numerical trouble-free characteristics of I-ECP for full three-dimensional problems; a serious numerical problem appearing in thermal topology optimization is erroneous temperature undershooting. The effectiveness of the present implementation was checked through the design optimization of three-dimensional fins.

  • PDF

Noise Optimization of the Cooling Fan in an Engine Room by using Neural Network (신경망이론을 적용한 엔진룸내의 냉각팬 소음 최적화 연구)

  • Chung, Ki-Hoon;Choi, Han-Lim;Kim, Bum-Sub;Kim, Jae-Seung;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.116-121
    • /
    • 2002
  • Axial fans are widely used in heavy machines due to their ability to produce high flow rate for cooling of engines. At the same time, the noise generated by these fans causes one of the most serious problems. This work is concerned with the low noise technique of discrete frequency noise. To calculate the unsteady resultant force over the fan blade in an unsymmetric engine room. Time-Marching Free-Wake Method is used. From the calculations of unsteady force on fan blades, noise signal of an engine cooling fan is calculated by using an acoustic similarity law. Noise optimization is obtained from Neural Network which is constructed based on the calculated flow rate and noise spectrum.

  • PDF

Influences of Cooling Conditions on the Thermally-Induced Birefringence in Injection Molding (사출성형 냉각조건이 열에 의한 복굴절에 미치는 영향)

  • Lee, H.S.;Isayev, A.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.258-261
    • /
    • 2007
  • Simulations of the thermally-induced residual stresses and birefringence in freely quenched plates of polycarbonate were performed by using the linear viscoelastic and photoviscoelastic constitutive equations for the mechanical and optical properties, respectively, and the first order rate equation for volume relaxation. The predictions for the birefringence showed good agreement with experimental measurements. Based on the simulation, the influences of various cooling conditions on the residual stress and birefringence in plates were investigated. The residual stress and birefringence increased with increasing initial temperature, decreasing coolant temperature and increasing heat transfer coefficient of coolants.

  • PDF

A Numerical Study on Flow and Cooling Characteristics of Impinging Jets on a Moving Plate (이동하는 평판에서 충돌제트의 유동 및 냉각 특성에 대한 수치적 연구)

  • Jeon, Jin-Ho;Suh, Young-Ho;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2562-2567
    • /
    • 2008
  • Jet impingement on a moving plate, which is applicable to cooling of hot metals in a steel-making process, is investigated numerically by solving the Navier-Stokes equations in the liquid and gas phases. The liquid-gas interface or free surface is tracked by a level-set method which is improved by incorporating the ghost fluid approach based on a sharp-interface representation. The computations are made for multiple jets as well as a single jet to compare their flow characteristics. Also, the effects of the nozzle pitch, moving velocity of plate and jet velocity on the interfacial motion and the associated flow and temperature fields.

  • PDF

Design of Automotive Engine Cooling Fan and Study on Noise Reduction through Modification of System (자동차용 냉각홴의 설계와 시스템 개선을 통한 저소음화 연구)

  • 김병주;강상규;김규영;이재영;이덕호;신동수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1107-1114
    • /
    • 2004
  • Axial fans are widely used for automotive engine cooling device due to their ability to produce high flow rate to keep engine cool. At the same time, the noise generated by these fans causes one of the most serious problems. Especially, engine cooling fan noise in idle condition of a car is noticeable. Therefore. the high efficient and low-noise fan is seriously needed. When a new fan system is designed, system resistance and non-uniform inflow are the key factors to get the high performance and low noise fan system. In this study, aerodynamic and acoustic calculations are carried out on the automotive cooling fan and system. Effects of various design parameters are studied through the free wake analysis and experiments. Better performance and noise characteristic are obtained for the new design fan using the methodology. Furthermore through the modification of the fan system geometry parameters, the fan system produce more flow rate and become less noisy.

A Study on the Machinability of High Strength Steel with Internally Cooled Cutting Tool (공구내부냉각에 의한 고장력합금강의 피삭성에 관한 연구)

  • 김정두
    • Tribology and Lubricants
    • /
    • v.5 no.1
    • /
    • pp.44-50
    • /
    • 1989
  • High strength steel is similar to carbon steel in its composition. This material is developed originally for special uses such as aerospace and automobile due to its high strength and shock-free property in spite of lightness. But the chemical attraction of high strength steel is serious, which includes comminution of formation, metalization and strengthening. Machining results in built-up edge between this material and the tool. Especially the work hardening behavior results in tool life shortening, which was caused by temperature generation during machining. In this study, cooling system was made in which liquid nitrogen is supplied to circulate in order to make up for these weaknesses. Machining of high strength steels, which is recognized as difficult to machine materials, was conducted after tool is cooled at -195$\circ$C. Experimental results showed that the tool was cooled down rapidly below -195$\circ$C in about 200 seconds. The tool temperature of machining with cooling system was lowered by 60~95$\circ$C than that of machining in room temperature. The hardness of the surface of chip is decreased by machining with cooling system. And the machining using the cooling system made it possible to increase shear angle, to retain smooth surface on chip without built-up-edge and to get a better roughness.

Turbulence Driven by Supernova Explosions in a Radiatively-Cooling Magnetized Interstellar Medium

  • KIM JONGSOO;BALSARA DINSHAW;MAC LOW MORDECAI-MARK
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.333-335
    • /
    • 2001
  • We study the properties of supernova (SN) driven interstellar turbulence with a numerical magnetohydrodynamic (MHD) model. Calculations were done using the RIEMANN framework for MHD, which is highly suited for astrophysical flows because it tracks shocks using a Riemann solver and ensures pressure positivity and a divergence-free magnetic field. We start our simulations with a uniform density threaded by a uniform magnetic field. A simplified radiative cooling curve and a constant heating rate are also included. In this radiatively-cooling magnetized medium, we explode SNe one at a time at randomly chosen positions with SN explosion rates equal to and 12 times higher than the Galactic value. The evolution of the system is basically determined by the input energy of SN explosions and the output energy of radiative cooling. We follow the simulations to the point where the total energy of the system, as well as thermal, kinetic, and magnetic energy individually, has reached a quasi-stationary value. From the numerical experiments, we find that: i) both thermal and dynamical processes are important in determining the phases of the interstellar medium, and ii) the power index n of the $B-p^n$ relation is consistent with observed values.

  • PDF

Influence of Mo and Cr Contents on Hardenability of Low-Carbon Boron Steels (저탄소 보론강의 경화능에 미치는 Mo 및 Cr 함량의 영향)

  • Hwang, Byoungchul;Suh, Dong-Woo
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.555-561
    • /
    • 2013
  • The hardenability of low-carbon boron steels with different molybdenum and chromium contents was investigated using dilatometry, microstructural observations and secondary ion mass spectroscopy (SIMS), and then discussed in terms of the segregation and precipitation behaviors of boron. The hardenability was quantitatively evaluated by a critical cooling rate obtained from the hardness distribution plotted as a function of cooling rate. It was found that the molybdenum addition was more effective than the chromium addition to increase the hardenability of boron steels, in contrast to boron-free steels. The addition of 0.2 wt.% molybdenum completely suppressed the formation of eutectoid ferrite, even at the slow cooling rate of $0.2^{\circ}C/s$, while the addition of 0.5 wt.% chromium did this at cooling rates above $3^{\circ}C/s$. The SIMS analysis results to observe the boron distribution at the austenite grain boundaries confirmed that the addition of 0.2 wt.% molybdenum effectively increased the hardenability of boron steels, as the boron atoms were significantly segregated to the austenite grain boundaries without the precipitation of borocarbide, thus retarding the austenite-to-ferrite transformation compared to the addition of 0.5 wt.% chromium. On the other hand, the synergistic effect of molybdenum and boron on the hardenability of boron steels could be explained from thermodynamic and kinetic perspectives.

Design Considerations of Cryogenic Cooling System for High Field Magnets

  • Choi, Yeon-Suk;Kim, Dong-Lak;Lee, Byoung-Seob;Yang, Hyung-Suk;Yoo Jong-Shin;Painter Thomas A.;Miller John R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.4
    • /
    • pp.30-33
    • /
    • 2006
  • Several crucial issues are discussed in the design of cryogenic cooling system for high field magnets. This study is mainly motivated by our ongoing program to develop a 21 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR MS). The magnets of this system will be built horizontally to accomplish the requirement of user friendliness and reliability, and the replenishment of cryogen will not be necessary by a closed-loop cooling concept. The initial cool-down and safety are basically considered in this paper. The effects of the helium II volume and the gap distance of the weight load relief valve (or safety valve) on the cool-down time and temperature rising during an off-normal state are discussed. The total amount of cryogenic cooling loads and the required helium flow rate during cool-down are also estimated by a relevant heat transfer analysis. The temperatures of cryogen-free radiation shield are finally determined from the refrigeration power of a cryocooler and the total cryogenic loads.

A Study on the Indoor Airflow Pattern by Changing the Location of Mechanical Terminal Unit (실내 급.배기구 위치변화에 따른 실 공기유동에 관한 연구)

  • Choi, Jeong-Min;Cho, Sung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.193-200
    • /
    • 2009
  • The ventilation system of apartments can be divided by supply and exhaust fan, supply fan and exhaust free and supply free and exhaust fan. Recently, the individual ventilation system and central ventilation system which is combined cooling system with duct system are applied to apartment ventilation system. The airflow pattern is affected by location of supply unit and exhaust unit in indoor. This study is to investigate the proper distance between supply unit and exhaust unit using CFD. As a result of this study, the proper distance between supply unit and exhaust unit could be suggested at the interval of 3 m in supply and exhaust fan system and 2.5 m in supply fan and exhaust free.