• Title/Summary/Keyword: Free Torque

Search Result 151, Processing Time 0.027 seconds

Characteristic Analysis of Touch Free Gear Using Permamant Magnet (비접촉 구동용 마그네트 기어 토크 특성 해석)

  • Oh, Young-Jin;Ha, Kyung-Ho;Hong, Jung-Pyo;Oh, Young-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.754-756
    • /
    • 2001
  • This study investigates the characteristics of touch-free permanent magnet gear according to design parameters. The effects of the design parameters on the magnetic torque is analyzed by using 3 dimensional Finite Element Method (FEM). The considered parameters are magnetization thickness, skew angle, stack length, inner and outer diameter and the number of pole. And the validity of analysis method is confirmed by the experimental results.

  • PDF

A method of collision-free trajectory planning for two robot arms

  • Lee, Jihong;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.649-652
    • /
    • 1989
  • In this paper we outline an approach for the collision-free trajectory planning of two robot arms which are modeled as connected line segments. A new approach to determine the collision between two robot arms and the boundary of the collision region in the coordination space is proposed. The coordination curve may then be chosen to avoid the collision region. For minimum time trajectory, time is assigned to this curve by dynamic time scaling under constraints such as maximum torque or maximum angular velocity of each actuator. A comparison of the proposed method and the graphical method of determining the collision region is also included. Finally, as an example, some simulation results for two SCARA type robots are presented.

  • PDF

Evaluation of Insertion of torque and Pull-out strength of mini-screws according to different thickness of artificial cortical bone (다양한 교정용 미니 스크류의 인공 피질골 두께에 따른 삽입 토오크와 Pull-out 강도 비교)

  • Song, Young-Youn;Cha, Jung-Yul;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.37 no.1 s.120
    • /
    • pp.5-15
    • /
    • 2007
  • Objective: The purpose of this study was to evaluate the mechanical performance of mini-screws during insertion into artificial bone with use of the driving torque tester (Biomaterials Korea, Seoul, Korea), as well as testing of Pull-out Strength (POS). Methods: Experimental bone blocks with different cortical bone thickness were used as specimens. Three modules of commercially available drill-free type mini-screws (Type A; pure cylindrical type, Biomaterials Korea, Seoul, Korea, Type B; partially cylindrical type, Jeil Medical, Seoul, Korea, Type C; combination type of cylindrical and tapered portions, Ortholution, Seoul, Korea), were used. Results: Difference in the cortical bone thickness had little effect on the maximum insertion torque (MIT) in Type A mini-screws. But in Type B and C, MIT increased as the cortical bone thickness Increased. MIT of Type C was highest in all situations, then Type B and Type A in order. Type C showed lower POS than Type A or B in all situations. There were statistically significant correlations between cortical bone thickness and MIT, and POS for each type of the mini-screws. Conclusion: Since different screw designs showed different insertion torques with increases in cortical bone thickness, the best suitable screw design should be selected according to the different cortical thicknesses at the implant sites.

Influence of the Silver Line Dance Applied to the elderly on the Balance during Walking (라인댄스 운동이 여성노인들의 보행 균형성 요인에 미치는 영향)

  • Choi, Youn-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.3
    • /
    • pp.109-118
    • /
    • 2013
  • The purpose of this study was to determine the effects of line dance programme on the balance ability during walking to reveal the exercise intervention for fall prevention. A 12-week line dance programme was applied to 18 elderly females who aged more than 65 years in the community. Balance ability during walking was evaluated by the range of center of pressure(cop), the velocity of cop, and free torque that calculated on the basis of ground reaction force data. The range and velocity of cop in the anterio-posterior were significantly reduced after performing(p<.01, p<.05, respectively), but change in those of cop in the medio-lateral and free torque were not found. It was demonstrates that 12-week line dance programme allows more effective in anterio-posterior stability of walking. It was suggested that the effect of fall prevention exercise should be studied more associate with fall frequency as future study.

Numerical Analysis of Aerodynamic Characteristics and Performance Analysis on H-rotor with Various Solidities (솔리디티에 따른 H-로터의 공기역학적 특성 및 성능해석)

  • Joo, Sungjun;Lee, Juhee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.5-13
    • /
    • 2016
  • Three-dimensional unsteady numerical analysis has been performed to observe aerodynamic characteristics of a H-rotor. Generally, the structure of the H-rotor is simple but the aerodynamic characteristics are exceptionably complicated since the angle of attacks and incident velocities to a blade are considerably varied according to the azimuth angles and solidities. The blade in the upwind revolution between 0 to 180 degree obtains aerodynamic energy from the free stream but the blade in the downwind revolution between 180 to 360 degree does not. When the rotating speed increases, the blade in the downwind revolution accelerates the air around the blade like a fan and it consumes the energy and shows negative torque in the area. On the other hand, the direction of the free stream is bent because of the interaction between blade the free stream. Therefore, the operation point (highest power coefficient) appears at a lower tip-speed-ratio what it is expected.

User-Oriented Controller Design for Multi-Axis Manipulators (다관절 머니퓰레이터의 사용자 중심 제어기 설계)

  • Son, HeonSuk;Kang, DaeHoon;Lee, JangMyung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • This paper proposes a PC-based open architecture controller for a multi-axis robotic manipulator. The designed controller can be applied for various multi-axes robotic manipulators since the motion controller is implemented on a PC with its peripheral devices. The accuracy of the controller based on the computed torque method has been measured with the dynamic model of manipulator. Since the controller is implemented in the PC-based architecture, it is free from the user circumstances and the operating environment. Dynamics of the manipulator have been compensated by the feed forward path in the inner loop and the resulting linear outer loop has been controlled by PD algorithm. Using the specialized language, it can be more efficient in programming and in driving of the multi-axis robot. Unlike the conventional controller that is used to control only a specific robot, this controller can be easily changed for various types of robots. This paper proposes a PC-based controller that has a simple architecture with its simple interface circuits than general commercial controllers. The maintenance and the performance of the controller can be easily improved for a specific robot. In fact, using a Samsung multi-axis robot, AT1, the controller performance and convenience of the PC-based controller have been verified by comparing to the commercial one.

  • PDF

Location Issue of Bearing and Unbalance Mass on the Balance Shaft for a Inline 4-Cylinder Engine (직렬 4기통 엔진용 밸런스 샤프트의 베어링 및 불평형 질량 위치 결정 문제)

  • Bae, Chul-Yong;Kim, Chan-Jung;Lee, Dong-Won;Kwon, Seong-Jin;Lee, Bong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.277-283
    • /
    • 2008
  • Balance shaft module contributes to reduce the engine-born vibration by compensating it from a unbalance mass with opposite phase but practically, this device has some problems during the operation in a high speed owing to the considerable amount of unbalance mass that leads to the large quantity of bending deformation as well as torque fluctuation at the balance shaft. To tackle two main problems, the design strategy on balance shaft is suggested by addressing the optimal location of unbalance mass and supporting hearing based on the formulation of objective function that minimizes critical issues, both bending deformation as well as torque fluctuation. The boundary condition of balance shaft assumes to be free such that any external force or contact component is not taken into consideration in this study.

A Study on the Design of Propeller Shaft for Reduction of Torsional Vibration (비틀림짙동 저감을 위한 추진축 설계에 관한 연구)

  • 최은오;안병민;홍동표;정태진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.221-228
    • /
    • 1999
  • A full-time four wheel drive vehicle is driven literally full time by the front and the rear wheels. Front and rear drive shafts are rotated rapidly in the extremely torsional state, which can cause various vibration and noise problems. The purpose of this study is to reduce the vibration and the noise of the full -time four wheel drive vehicle. In this paper, both the causes and the methods for reduction of torsional vibration are suggested. For this study, the characteristics of the torsional vibration are analyzed by free and forced torsional vibration simulation. And this paper described the influence upon the torsional vibration with emphasis shafting system. The validity of simulation models is checked by the field test. The forced vibration simulation with the variations of shaft design factors are performed by the checked models. According to the simulation , the resonance region shifts and the torque fluctuation varies in the system,. Finally, the methods and the effects for the torsional vibration reduction in driveline are proposed.

  • PDF

The design of low-power MR damper using permanent magnet (영구자석을 이용한 저전력형 MR 감쇠기의 설계)

  • Kim, Jung-Hoon;Oh, Jun-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.433-439
    • /
    • 2000
  • Lots of semi-active control devices have been developed in recent years because they have the best features of passive and active system. Especially, controllable magneto-rheological(MR) fluid devices have received significant attention in these area of research. The MR fluid is the material that reversibly changes from a free-flowing, linear viscous fluid to a semisolid with a controllable yield strength in milliseconds when exposed to a magnetic field. If the magnetic field is induced by moving a permanent magnet instead of applying current to a solenoid, it is possible to design a MR damper consuming low power because the power consumption is reduced at steady state. This paper proposes valve mode MR damper using permanent magnetic circuit that has wide range of operation with low power consumption and small size. To design a MR damper that has a large maximum dissipating torque and a low damping coefficient, a design parameter is adopted. The magnetic circuit, material of choke and choke type are selected experimentally with the design parameter. The behaviors of the damper are examined and torque tracking control using PID feedback controller is performed for step, ramp and sinusoidal trajectories.

  • PDF

Synthesis of Polypropylene-Polystyrene Copolymer via Ultrasonic Irradiation-Initiated Polymerization of Styrene in Polypropylene Solution

  • Kim, Hyungsu;Kim, Jihye;Kim, Miwha;Seyoung Oh;Lee, Jaewook
    • Macromolecular Research
    • /
    • v.9 no.3
    • /
    • pp.150-156
    • /
    • 2001
  • Polystyrenes(PS) were grafted onto polypropylene(PP) in the PP solution by ultrasonic irradiation-initiated polymerization of styrene. The resulting products consisted of mixtures of homopolymers and PP-PS copolymer because of the homopolymerization of styrene itself and copolymerization with PP. The dependency of the designated polymerization on sonication times was investigated to monitor the evolution lion of the copolymerization. Formation of the PP-PS copolymer was confirmed by FTIR analysis of the reaction products after a proper separation procedure of free PS and PP-PS copolymer. It was found that the tendency for the formation of PP-PS copolymer was closely related with the phase behavior of the PP/styrene mixture which was also influenced by sonication time. In order to verify the effectiveness of the PP-PS copolymer as a compatibilizer for PP/PS blend, melt mixing of PP/PS/PP-PS was performed in a batch mixer. During the mixing, the average torque was higher for the blend containing PP-PS copolymer influencing compatibilization. In accordance with the results from FRIR analysis and torque measurement, the PS domain size remarkably decreased in the PP/PS/PP-PS blend.

  • PDF