• 제목/요약/키워드: Free Surface Flows

검색결과 198건 처리시간 0.021초

레이저 점 용접의 키홀 발생과 안정성에 대한 해석 (Analysis of Keyhole Formation and Stability in Laser Spot Welding)

  • 고성훈;이재영;유중돈
    • Journal of Welding and Joining
    • /
    • 제20권4호
    • /
    • pp.484-490
    • /
    • 2002
  • The formation and stability of stationary laser weld keyholes were investigated using a numerical simulation. The effect of multiple reflections in the keyhole was estimated using the ray tracing method, and the free surface profile, flow velocity and temperature distribution were calculated numerically. In the simulation, the keyhole was formed by the displacement of the melt induced by evaporation recoil pressure, while surface tension and hydrostatic pressure opposed cavity formation. A transition mode having the geometry of the conduction mode with keyhole formation occurred between the conduction and keyhole modes. At laser powers of 500W and greater, the protrusion occurred on the keyhole wall, which resulted in keyhole collapse and void formation at the bottom. Initiation of the protrusion was caused mainly by collision of upward and downward flows due to the pressure components, and Marangoni flow had minor effects on the flow patterns and keyhole stability.bility.

Wave Motions in Stratified Fluids by a Translating Plate

  • Joo Sang-Woo;Park Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.882-895
    • /
    • 2006
  • Surface and interfacial waves in two superposed horizontal inviscid fluids of finite depths are studied. The flow is induced by translating a vertical rigid plate with a prescribed velocity. Analytical solutions that accurately predict the motion of the free surface and the interface are obtained by using a small-Froude-number approximation. Three different velocities of the plate are considered, while flows induced by any arbitrary motion of the plate can be easily analyzed by a linear superposition of the solutions obtained. It is shown that pinching of the upper layer can occur for a sufficiently thin upper layer, which leads to its rupture into small segments. Other interesting phenomena, such as primary and secondary wiggles generated on the interface near the wavemaker, are discussed.

Hydrodynamic Forces for Heaving Cylinders on Water of Finite Depth

  • J.H.,Hwang;K.P.,Rhee;Hisaaki,Maeda;Sumihiro,Eguchi
    • 대한조선학회지
    • /
    • 제13권3호
    • /
    • pp.1-9
    • /
    • 1976
  • A numerical method for solving the boundary-value problem related to potential flows with a free surface and an experimental work are introduced in this paper. The forced heaving motion of cylinders with arbitrary shapes in water of finite depth are Considered here. The Fredholm integral equation of the first kind is employed in determining strengths of singularities distributed on the body surface. And the results obtained by the present method for the case of a heaving circular cylinder on water of finite depth agree well with existing results of earlier investigators.

  • PDF

MECHANISM OF KEYHOLE FORMATION AND STABILITY IN STATIONARY LASER WELDING

  • Lee, Jae Y.;Sung H. Ko;Choong D. Yoo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.644-651
    • /
    • 2002
  • The formation and stability of stationary laser weld keyholes are investigated using a numerical simulation. The effect of multiple reflections in the keyhole is estimated using the ray tracing method, and the free surface profile, flow velocity and temperature distribution are calculated numerically. In the simulation, the keyhole is formed by the displacement of the melt induced by evaporation recoil pressure, while surface tension and hydrostatic pressure oppose cavity formation. At laser powers of 500W and greater, the protrusion occurs on the keyhole wall, which results in keyhole collapse and void formation at the bottom. Initiation of the protrusion is caused mainly by collision of upward and downward flows due to the pressure components.

  • PDF

FDS-HCIB법을 이용한 고립파에 의한 물체 운동 모사 (Simulation of Body Motion Caused by a Solitary Wave using the FDS-HCIB Method)

  • 신상묵;김인철;김용직
    • 대한조선학회논문집
    • /
    • 제51권4호
    • /
    • pp.265-273
    • /
    • 2014
  • Wave-body interaction is simulated using a developed code based on the flux-difference splitting scheme for immiscible and incompressible fluids and the hybrid Cartesian/immersed boundary method. A free surface is captured as a moving contact discontinuity within a fluid domain and an approximated Riemann solver is used to estimate the inviscid flux across the discontinuity. Immersed boundary nodes are identified inside an instantaneous fluid domain near a moving body, then dependent variables are reconstructed at those immersed boundary nodes based on interpolation along local normal lines to the boundary. Free surface flows around an oscillating cylinder are simulated and the computed wave elevations are compared with other reported results. The generation of a solitary wave by a moving wave-maker is simulated and the time histories of wave elevations at two different points are compared with other results. The developed code is applied to simulate body motion of an elastically mounted circular cylinder as a solitary wave passes the body. The force acting on an elastically mounted cylinder is compared with the force acting on a fixed cylinder. Grid independency of the computed body motion is established based on a comparison of results using three different-size grids.

사각용기의 슬로싱 유동에 관한 연구 (Study of Sloshing Flow in a Rectangular Tank)

  • 지영무;신영섭;박준상;현재민
    • 대한기계학회논문집B
    • /
    • 제35권6호
    • /
    • pp.617-624
    • /
    • 2011
  • 본 연구에서는 사각용기 내에서의 자유표면을 갖는 2차원 슬로싱 문제에 대하여 고찰하였다. 용기 내부의 유동은 수평방향의 조화운동을 통해 형성되며, 외부 가진 속도는 u=Asin($2{\pi}ft$)으로 정의 된다. 여기서 u, A�� 그리고 f는 외부로부터 작용하는 가진 속도, 변위 그리고 주파수를 각각 나타낸다. 큰 변위(A~O(1)) 슬로싱 문제의 해석을 위한 실험설비를 구축하였으며, 광범위한 영역에서의 PIV실험을 수행하였다. 실험을 통해 자유표면의 움직임(motion)을 각각 서로 다른 물리적 특성을 갖는 세 가지; 선형 슬로싱의 자유표면의 움직임과 유사한 standing wave motion, 사각용기의 속도가 0을 지나는 순간(the moment of turn-over) 측벽에서 발생하는 run-up motion 그리고 측벽으로부터 내부유체로 점차적으로 전파되는 bore motion으로 분류하였다.

트랜섬 선미 후방의 점성 유동장 Topology 관찰 (Topological View of Viscous Flow behind Transom Stern)

  • 김우전;박일룡
    • 대한조선학회논문집
    • /
    • 제42권4호
    • /
    • pp.322-329
    • /
    • 2005
  • Viscous flows behind transom stern are analyzed based on CFD simulation results. Stern wave pattern is often complicated due to the abrupt change of stern surface curvature and flow separation at transom. When a ship advances at high speed, whole transom stern is exposed out of water, resulting in the so-called 'dry transom'. However, in the moderate speed regime, stern wave development in conjunction of flow separation makes unstable wavy surface partially covering transom surface, i.e., the so-called 'wetted transom'. Transom wave formation is usually affecting the resistance characteristics of a ship, since the pressure contribution on transom surface as well as the wave-making resistance is changed. Flow modeling for 'wetted transom' is difficult, while the 'dry transom modeling' is often applied for the high-speed vessels. In the present study CFD results from the RANS equation solver using a finite volume method with level-set treatment are utilized to assess the topology of transom flow pattern for a destroyer model (DTMB5415) and a container ship (KCS). It is found that transom flow patterns are quite different for the two ships, in conformity to the shape of submerged transom. Furthermore, the existence of free surface seems to after the flow topology in case of KCS.

초음속 충돌제트의 유동특성에 대한 실험적 연구 (An Experimental Study on Flow Characteristics of a Supersonic Impinging Jet)

  • 신필권;신완순;이택상;박종호;김윤곤
    • 한국추진공학회지
    • /
    • 제2권3호
    • /
    • pp.10-19
    • /
    • 1998
  • 초음속 부족팽창제트가 충돌할 때 유동장은 매우 복잡한 유동구조를 나타낸다. 본 연구에서는 음속노즐 출구 직경의 1.5배 거리에 경사각 $60^{\cire}$~$90^{\cire}$로 설치된 평판에 미치는 초음속 제트에 대해 쉴릴렌 장치를 이용하여 유동구조를 가시화 하였으며, 평판 위에 작용하는 압력분포를 측정하였고 감열지를 이용하여 평판 표면 유동을 가시화하여 기존의 연구결과와 비교하였다. 연구결과 간단한 방법으로 저마하수에서의 평판 유동을 가시화 할 수 있는 방법을 제시하고 충돌제트의 유동구조를 규명하였다.

  • PDF

식생된 개수로 흐름에서의 난류의 비등방성 (Anisotropy of Turbulence in Vegetated Open-Channel Flows)

  • 강형식;최성욱
    • 한국수자원학회논문집
    • /
    • 제38권10호
    • /
    • pp.871-883
    • /
    • 2005
  • 본 논문은 식생된 개수로 흐름에서 난류의 비등방성이 평균유속 및 난류구조에 미치는 영향을 파악하기 위한 수치모의 연구이다. 비등방성 난류모형인 레이놀즈응력모형을 이용하여 식생이 없는 일반 개수로 흐름과 침수 및 정수식생된 개수로 흐름에서의 평균유속 및 난류구조를 수치모의하였다. 수치모의 결과를 기존의 실험결과 및 k-$\epsilon$ 모형과 응력대수식모형에 의한 계산 결과와 비교하였다. 식생이 없는 일반 개수로 흐름과 정수식생된 개수로 흐름에서의 평균유속과 레이놀즈응력을 계산한 결과 등방성 및 비등방성 난류모형에 의한 해석 결과의 차이가 거의 나타나지 않았다. 즉, 난류의 비등방성의 영향이 매우 작은 것으로 나타났다. 그러나 자유수면 및 바닥 근처에서 발생되는 난류의 감쇠효과에 의한 난류의 비등방성은 레이놀즈응력이 가장 잘 예측하는 것으로 나타났다. 침수식생된 개수로 흐름의 경우 식생높이 부근에서 난류의 비등방성이 강하게 발생하는 것으로 나타났다. 계산된 평균유속 및 난류구조는 레이놀즈응력모형이 다른 모형 보다 가장 정확한 예측을 수행하였으며, 등방성 모형인 k-$\epsilon$ 모형은 식생높이 보다 높은 영역에서 평균유속 및 난류강도를 각각 과대 및 과소 예측하는 것으로 나타났다. 또한 계산된 결과를 이용하여 식생된 개수로 흐름에서의 부유사량을 산정한 결과 등방성 난류모형이 부유사량을 과소 산정하는 것으로 나타났다.

물리화학적 메커니즘에 기이한 큰크리트의 염화물 흡착 등온에 대한 모델링 (Integrated Modeling of Chloride Binding Isotherm of Concrete Based on Physical and Chemical Mechanisms)

  • 윤인석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.537-540
    • /
    • 2006
  • Over the past few decades, a considerable number of studies on the durability of concrete have been carried out extensively. A lot of improvements have been achieved especially in modeling of ionic flows. However, the majority of these researches have not dealt with the chloride binding isotherm based on the mechanism, although chloride binding capacity can significantly impact on the total service life of concrete under marine environment. The purpose of this study is to develop the model of chloride binding isotherm based on the individual mechanism. It is well known that chlorides ions in concrete can be present; free chlorides dissolved in the pore solution, chemical bound chlorides reacted with the hydration compounds of cement, and physical bound attracted to the surface of C-S-H grains. First, sub-model for water soluble chloride content is suggested as a function of pore solution and degree of saturation. Second, chemical model is suggested separately to estimate the response of binding capacity due to C-S-H and Friedel's salt. Finally, physical bound chloride content is estimated to consider a surface area of C-S-H nano-grains and the distance limited by the Van der Waals force. The new model of chloride binding isotherm suggested in this study is based on their intrinsic binding mechanisms and hydration reaction of concrete. Accordingly, it is possible to characterize chloride binding isotherm at the arbitrary stage of hydration time and arbitrary location from the surface of concrete. Comparative study with experimental data of published literature is accomplished to validity this model.

  • PDF