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Abstract

A numerical method for solving the boundary-value problem rclated to potential flows with a free

sutface and an experimental work are introduced in this paper. The forced heaving motion Of

cylinders with arbitrary shapes in water of finite depth are considered here. The Fredholm integral

equation of the first kind is employed in determining strengthes of singularities distributed on the

body surface. And the results obtained by the present method for the case of a heaving circular

cylinder on water of finite depth agree well with existing results of earlier investigators.

1. Introduction

Hydrodynamic forces, such as added mass, damping
ctc. for forced heaving cylinders in water of finite
depth were investigated earlier by Yu & Ursell in
1961(1] and C.H. Kim in 1969(2]. They solved
the boundary value problem related to the above
problems by wusing multipole expansion method. In
the present paper, the integral equation method
by distributing singularities on the body surface
has been developed to solve the same problem for
cylinders of the arbitrary section.

This work has been performed by the joint research
between the Seoul National University and the Univer-
sity of Tokyo. The analytical work has been done at
the Seoul National University and the experimental

work at the University of Tokyo.

2. Fundamental Equations.

For the coordinate system right-handed rectangular
coordinate is used. The y axis is taken directed to the
force of gravity, the z axis coincides with the free
surface when the fluid is at rest and is taken directed

to the left, as shown in Fig. 1. The normal vector,

n, at the contour of arbitrary scction, C, is direcled
to the fluid, and & denotes the depth of walcr,
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«ig. 1. Coordinate system

1f the motion is started from the rest in the fluid
of inviscid, incompressible and surface tension may
be neglected, then the velocity potential @ can exist.
Let P and 7 be pressure and elevation of free
surface with time factor respectively. Now @, P and

» can be rewritten as follows,

P=R,{pe v}, 2.0
P=R.{peiut}, (2.2)
7= Re{7e™i!}, 2.3
Let

p=iwYg, (2.4)

where Y is the amplitude of oscillation, and ¢ is
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the velocity potential of unit velocity amplitude which
must satisfy the Laplace equation

32 92 . . .
?’9{; an:o in the fluid region, (2.5)
and also satisfy the following boundary conditions;

The linearized free surface condition

P _ .
7y—+K¢—O on y=0, (2.6)

where
K=w?/g, g is gravitational acccleration.
Bottom condition
e
Radiation condition
p~—iA* (k) cosh ko(h—y)e*it® as z—-too, (2.8)

where A*(k,) is a Kochin [unction, and ks is a posi-

on y=h 2.7

tive root of
K=k, tanh kh. (2.9
Body boundary condition for heaving oscillation is

g _ 9y
= on C, (2.10)

and this condition can be rewritten by using stream
function ¢ instead of ¢, as follows
o=z on C, 2.11)
Pressure equation can be derived from the Euler’s
equation of motion as follows
p=—pa?Y. (2.12)
The hydrodynamic forces can be obtained by integ-
rating Eq. (2.12) along the body surface.

3. The velocity potential of unit
strength by pulsating sources

Assume the velocity potential @(z,y,z) which is the
solution of Laplace equation as

O{z,y,t) =10g7:‘1 coswt+ @1 (z,y)coswt+ pz(z,y) sinwt,

G

where r and r; are distances from the arbitrary point,
A(z,y), to the position of source, S(a,5), and to the
positon of image of source about z-axis, S'(a,—b),
respectively.

¢1(x,y) which can be determined to satisfy the free
surface condition (2.6) and the bottom condition (2.7)

with log rL is obtained as

qs,(x,y):P.V.j: [

__ 2e”*sinkhkh
kcoshkh

2coshk(h—b)coshk(h—y)
coskk(Kcoshkh—ksinhkh)

sinhky] « cosklz—aldk, (3.2)
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where P.V.j:rcpresnts the principal value integral,
which must be taken to avoid a pole which exists on
the path of integrating.
After performing the principal value integral along
the path as shown in Fig. 2, we can obtain ¢; as
$1(z,y) =1z coshk,(h—b)coshk,(h—y)

2k sink2koh sink|z—al
— 5 g Coska(B—b) cos kn(h—y) -4, 5-a
L 4 2k h T Sl[lzkn ] l
i 2cosh ik(h-b)cosh ik(h—y)
SANAAN coshikh(Kcosh ikh-ik sinh ikh)

__ 2e M sinh kb

ik coshikh
where %, are positive roots of the following equation
Kcoskuh+ky sink,h=0. (3.4)

ky

sink ikh ] e =2 lidk } , (3.2

k= kyriky

% k

(o]
Fig. 2. Integraling path

After Substituting Eq. (3.3) into Egq. (3.1), we
can determine the ¢z(z,y) from the radiation condition
(2.8) as

$r(zy)=—4a _coshkl(h—b)coshk,(h—y)

Dk sinhzbh — coskelz—al

(3.5)
Finally, the solution of Laplace equation which
satisfies all boundary conditions can be rearranged as

kot—
ko(hkei— K2+K)

ko(h—y)sin(k,| z—al —wt)

k24 K? _ .
Z Zﬂkn(hkuz-l-th K)coslzn(h b) cosky (h—7)

“”n' =alcoswt.

@ (z,y,t)=2x cosh k.(h—B) cosh

(3.6)
And the stream function, ¥, which is a conjugate
function of velocity potential, @, can be obtained as

follows by Cauchy-Riemann-Condition,
¥ (xyt)=sgn(z—a) | —2x

ko(h—B)sinkk,(h—y)cos(k,| x—al —wt)

i: k24 K?
" En(hka2 T K~ K)

k'K
(kohks*—h

cosh

2
KiK)

coska(h—b)sink.(h—y)
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e %l 578 cosot ] @7

+1;z>a

where sgn(zx—a)= { —1:2<a

4. Hydrodynamic forces

Since the Green function G at point A(x,y) due Lo
a source of pulsating strength at point S(a,b) is equiv-
alent to Eq.(3.6), the velocity potential at point A

can be expressed in the form
_ 1 P (S) _ 9 .
8 ) =L [ (84592 6ai)ds. 4D

Supposing ¢ (8) as the strength of distributed sources
over the section surface at point S, above equation

can be rewritten as follows

$(A)= jca(S)G(A;S)ds(S), 4.2)

and, from the body boundary condition, strength o
can be determined as a solution of Fredholm’s integral
cquation of second kind. But, Eg. (4.2) can be changed

as

U)o o= | 0($)G(A:89)ds(S) 4.9

by using stream function ¥ and conjugale Green
function G instead of ¢ and G respectively.

Let subscript ¢ and s denote the real part and
imaginary part of complex values respectively, then
the body boundary condition (2.11) takes the follo-

wing form.

Uelon c=x (4. 4)

ws]vn =0 (4 5)
And Eq(4.3) can be divided into two parts.

2= (0.6—0.Gds (1.6)

0={ (0.Gta.G)ds 4.7

From above equations, known as Fredholm’s integral
equation of first kind, . and g5 can be determined.
Now, the hydrodynamic forces, F, due to oscillation

are expressed from Eg. (2.12) as

F:-—pw2Y§c¢—g—f~ds (4.8)

And normalized forces, f, with pw?Y can be divided
into two parts, f: and f,, finally the added mass and
damping can be represented as

Added Mass=pfs,
Damping

4,9

=pofs, (4.10)

5. Haskind-Newman Relation.

Since, as x tends to positive and negative infinity,
the Green function G takes the form of

. 2 an_Kz
G~ —Z—kDE-— }mcosh ko(}l—b) cosh ka(h
—y)eit] 7| aslz|-—oo, 6.

A*(k,) can be represented as
2__K2
A= e § )
coshk,(h—b)eTitads (5.2)
by comparing Eq. (5.1) with Eq. (2.8).

In the above equation, A*(%,) is a amplitude func-
tion of radiation wave, and is called as Kochin function.
If the arbitrary section is symmetric about y axis, then

At (ks) =A (ko). (5.3)
The amplitude ratio 4 of the radiation wave at infinity
to the motion amplitude is

=<

Y
=—KA*(k,)cosh kh. 5.4
Damping, N, and the Kochin function have a relalion
such as

N=pw "g Csink koh coshkoh+ koh)

| A* (ko) 12 (5.5)

Hence, we can obtain the Haskind-Newman relation

from the Eq. (5.4) and Eq. (5.5) in the form of
N

_ ko . —A_.J
T TT Usinkkoh cosh k"h—*—k”h]! Kcoshko.h

(5.6)

2

6. Numerical Examples

To test the effect of numbers of source distributed
on the body surface on the results of calculation of
hydrodynamic forces, 11, 21 and 31 singularities are
distributed on the surface of a semi-circle in depth-to-
draft ratio of 2.0. In this case, the results by 11 points
give usable one for the consideration in damping force
only, and those by 21 and 31 points are agreeable
with those obtained by earlier investigators for both
added mass and damping. Considered this property,
all results of the present paper have been obtained by
distributing 21 point singularities on the immersed
body surface.

For the calculation of stream function ¥ and velocity

polential @;



O=2r, . BT ook ka(h—8) cosh ko(h
ko(hkE—hK* LK) ’ e
—y)sin(klz—a| —wt) — T2x
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and damping increase as the depth decreases from the
B k’l2+K2
a=1
coska(h—b)coskz(h-—y)e ™| 79| coswt,

EREE TR K)
V=sgn (z--a) { -9 k2-K?

(3.6)
ko (hkes! ~ K+ K)
b)sinkhk,(h—-y)cos(k,|z—al —wt)

above results. And it is noted that the added mass
coshk,(h—

PO . J SN

w=1  ka(hks>+hK2—K)

coefficient is becoming larger increasing depth-to-draft
e 39| coswt,

ratio in the low wave number region. It is understood

from the fact that the added mass coefficient becomes

infinity when wave number tends to zero.
coska(h--b)sink, (h-y)

1.5
Fig. 4 Amplitude ratio for semi-circle in heave

10{- ;
3.7 —— AUTHOR
Newton’s method was applied to calculate k. and k., 08
and in caleculation of infinite series in above cquations, Y
truncation of serics term was trealed by the following
condition; 06~
EXP(-knlz—al)<1.0E-0.6 6.1 7
The added mass and damping was nondimensionalized /// h/T=:12,(5]
041 4 AN 0
as ’ /// 40
-, Added mass g7
o° = pxB8 (6.2) /;
_ . 0.2t
. Damping - N, -
- ﬂmé’;}; (6.3) S T =e
’ B : Breadih,
and the relation between damping and amplitude ratio 0.0 015 KB12 110 =
can be derived from Eg. (5.6) as
A= V| Kk fisink 2k.h/ (sink 2koh+2kn)| (6.1
6.2 Semi-circle
The effect of depth of water on the added mass due

6.3 Lewis form
to a heaving oscillation was shown in Fig. 3, on dam-

10 r‘ \\

ping in Fig. 4. It can be shown that the added mass

From Fig. 5 and 6, it is clear that the behavior
of added mass and damping of Lewis form cylinder
with a half beam-to-draft ratio, B/2T, of 1.0 and a

Lowds Torm

CBI2T=1.0
IVIBT=0.841

0.0

B I
10

Fig. 3 Added mass for semi-circle in heave
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Fig. 5 Added mass for Lewis form in heave



Vol.-13, No. 3, Spetember 1976 5

1.0t~
~——— AUTHOR .
o ]

0B P — l[ - o 7 LN

Aﬂ e . l

%:_ - | T ]

G.6 // //’ ///—A—w-«. L / |
/y;\; 7 \,,___, [ TS G 2

04 7/ ON hiT=s
ey 175 =TI : m T
/4 2.0
/4 50 .
97l ,///// Fig.7 Lewis form model
W,
,/ type wave gauge which was located at 5 meters dist-
/’ ance from the model.
ARSI i § - . .
0.0 65 Wars 1o T 7.3. Mode of Oscillation,

The mode of oscillation was heaving only. The

Fig. 6 Amplitude ratio for Lewis form in heave amplitude was - 0.01m and the range of frequency

sectional area coefficient, 2P/BT, of 0.941 in finite between 2.5 Hz and 9 He.
depths is similar to those of a semi-circle. And the 7.4. Measurement System

shallow water effect on added mass of Lewis form for The block diagram of the measurement system is] |

a heaving oscillation is seems to be greater than that shown in Fig.9. For the measurcment of the force,'}

-

ol a semi-circle, comparing the Fig. 3 and Fig. 5. two load cclls of tension-compression type were used.y}

Honitor 1
i

7. Experimental Program P EE | !

7.1. Model
Principal dimensions of the Lewis cylinder are

TR v fascittoprap |

' i
- Gapee v | l
! ; i o
| i i L 1 - —— i
I

given in Table 1. ‘ |

Table 1 ]
e e T e T ) s it J

Length L= 1.7om Midslﬁp arca coclf.  f=Ce=0.941 B J oo 1‘ " | f’ -
Breadth B= 0. 20m Half Beam draft rtio HZB/2T=1.0 {} i G "[L QRN
Depth D=0, 21m Water plane area Aws0,5%5m 1.; ,.v'%,’], l;‘ - i
Draft  T=0.15m L_A'].J ‘I
Displacement W=71.1Kg Material Bras3 e SSSE S — ; :
° - g Mo e s e B

7.2. Experimental Basin . | . A
p . . Fig.9 Block diagram of measurement System
The tests were conducted in the basin of the
Institute of Industrial Science, University of Tokyo, 7.5. Water of Finite Depth
The arrangement of the basin is shown in Fig. 8. The Three water depths were investigated: #/T=1.5,

dotted line stands for the false bottom for shallow 1.75 and 2.0, where T is the draft of the model, A

water testing. The carriage on which the forced osci- water depth,
llating apparatus was mounted was located at the 7.6. Analysis of the Experiment
midstation of the basin., The radiation waves generated The equation of heaving motions of the model is

by oscillating model were measured by the resistance written as follows,
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(M+m)i+ N2+ pgAuz=E (7.1)
where, M=pV, z=z,cos wt, E=E.cos(wt+a)
p : density of water m : added mass
V : volume t:time
A, : water plane arca a : phase lag
g ° gravity accelcration  E, : amplitude of exciting
force
%, * amplitude of heaving N : wave damping coeffic-
ient
o @ angular frequency
Multiply both sides of equation (7.1) by coswz or
sinwt which are the signals through sin-cos potentio-
meter shown in Fig.9, and integrate it along time ¢
from 0 to z times of period 7. Then we get two
components of the hydrodynamic forces.

(1) In phase components (phase of acceleration)

nT al
S . {(M+m)2+ N2+ pgAwz) coswtdt= j .
Eocos(wt-f-a)coswtdt —~ {— (M+-m)w?+-pgAu} 2,
7171 — TIT (7 2)

== Facosa-
2

2
(2) Out of phase components (phase of velocity)

nT 7
j . {(M-+m)2+Nz+pgAwz) sinotdt= 5 oTEn

aT Easinaﬂ

2
(7.3
the added mass and

cos{wt+a)sinwtdt—>Nwoz,

From equation(7.2) and(7.3),

wave damping coefficient are obtained as follows,

E cosaﬂ
m :,pgfg’”,_— ¢ 2 -M
2] row? nT (7.8
ot
2
N Easinallz—’li- .5)
= A 7.5

The relation between wave damping coefficient and
wave amplitude ratio is derived from Haskind-Newm-

an’s formula;

__2kh

N =‘pg€,,A2 (1+' sinhzi.flf) .6
or
2N G ()} @

where wave amplitude ratio A=x/z,, 7 : amplitude of
radiation wave and the relation between wave number

k, and angular frequency o

7
2
—‘;—Zk,tanhkah (7.8)
The phase lag «a is obtained as follows
E sinaf—ngl
° N
tana=_ 2 = 2 .
o . cosa ™ML —(M+m)o®+ pghu .9
Tacosa-"5

Right hand sides of equation(7.2) and{(7.3) can be
obtained precisely by making use of a planimeter
when experimental data are analysed.
7.7. Experimental Results

Experimental results were represented in dimension-
less forms as follows,

(added mass) p’=m/p §-3'°'L

_reL
(Dko
2koh
(G )
(radiation wave amplitude ratio) A=7/z,

¢ =|E|/pgz.BL
These results are shown in Fig. 10.11 and 12 resp-

(wave damping coefficient) A?=N {

(amplitude of exciting force)
ectively. Phase lag is shown in Fig.13. Characterist-
ics of two load cells are little bit different from each
other. Only the experiment of water depth A/T=1.5
was conducted considering the adjustment of two load
cells, The difference between adjustment and non-adju-

stment of two load cells is shown in Fig'14.

20

° 15
4 1.75) EXPERIMENT
+ 20

THEORY
0.0 0'5 v i
: S ka2 1.0 15,

Fig. 10 Added mass for Lewis form
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Fig.13. Phase Lag

8. Discussions and results

The results obtained by author’s method for a

Fig. 14 Difference between adjusted & non-adjusted
characteristics of load cells

Ycung, however those by Kim give a small value
compared to others in the range of KB/2>>1.0.
In a zero limiting case of a frequency, the added

heaving circular cylinder in a depth-to-draft ratio of

mass by Yu-Ursell’s and Kim’s increases infinitely,

2.0 are compared, in Fig. 15 and 16, with those by

Bai’s Localized Finite Element Method [3), Yeung’s
Distribution Method [4],

Singularity
Kim’s New Multipole Expansion Method,

sell’s.

Author’s results coincide well with those

but it is proved by Bai(1976) that the added mass
has a finite value as a frequency tends to zero. Keil
(1974) and Ursell(1974), also, had obtained the same

results by the calculation. In this connection, author’s

and Yu-Ur-

by Bai and present results are acceptable.
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Fig. 15 Added mass for semi-cirele in heave

For the Lewis form cylinder with a half beam-to-
draft ratio of 1.0 and a sectional arca cocfficient of
0.941, the experimental results are compared with
those by calculation. This reveals that the results by
experiment give a little lower value than those by
calculation at h/T of 1.75 and 2.0 cxcept low frequ-
ency ranges, And it seems that the discrepancy betw-
een results by experiment and calculation at the depth
of 1.5T, as shown in Fig. 10 and Fig. 11, is mainly
based on diffculties of experiment due to an effcet by

a disturbance of fluid at shallow water.
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Fig. 16 Amplitude ratio for semi-cicle in heave

ding the result of calculation of hydrodynamic forces
for Lewis form cylinder by the finite element method

for the present paper.
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