• 제목/요약/키워드: Free Surface Effect

검색결과 850건 처리시간 0.038초

자유수면에서 마이크로 중력식 와류 수차 성능에 블레이드의 상대위치 변화가 미치는 영향 분석 (Effect Analysis of Relative Position of Blade on Performance of Micro Gravitational Vortex Turbine in Free Water Surface)

  • 최인호;김종우;정기수
    • 한국습지학회지
    • /
    • 제24권3호
    • /
    • pp.196-203
    • /
    • 2022
  • 본 논문은 자유수면에서 마이크로 중력식 와류 수차의 성능에 블레이드 상대위치 변화의 영향을 이해하는 것이다. 일정한 와류 유동에서 자유수면 아래 상대 와류 수심비(y/hv)의 범위 0 ~ 0.778 지점에 설치된 블레이드의 위치 변화에 따른 마이크로 와류 수차의 회전수, 전압 및 전류를 측정하였다. 유량은 0.0063 ~ 0.00662 m3/s 범위이다. 실험 결과는 유입되는 유속과 난류강도의 분포가 변하기 때문에 블레이드의 상대위치가 마이크로 와류 수차의 성능에 영향을 미치는 것으로 나타났다. 와류 수차에서 발생하는 에너지의 최대량은 상대 와류 수심비 0.111 ~ 0.222 지점에서 발생했다. 상대 와류 수심비 0.111 지점의 출력은 자유수면 아래 상대 와류 수심비 0.588 지점보다 약 2.4배 더 크게 나타난다.

Dynamic analysis of nanoscale beams including surface stress effects

  • Youcef, Djamel Ould;Kaci, Abdelhakim;Benzair, Abdelnour;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • 제21권1호
    • /
    • pp.65-74
    • /
    • 2018
  • In this article, an analytic non-classical model for the free vibrations of nanobeams accounting for surface stress effects is developed. The classical continuum mechanics fails to capture the surface energy effects and hence is not directly applicable at nanoscale. A general beam model based on Gurtin-Murdoch continuum surface elasticity theory is developed for the analysis of thin and thick beams. Thus, surface energy has a significant effect on the response of nanoscale structures, and is associated with their size-dependent behavior. To check the validity of the present analytic solution, the numerical results are compared with those obtained in the scientific literature. The influences of beam thickness, surface density, surface residual stress and surface elastic constants on the natural frequencies of nanobeams are also investigated. It is indicated that the effect of surface stress on the vibrational response of a nanobeam is dependent on its aspect ratio and thickness.

Formulation design of chloride-free cement additive by response surface methodology

  • Zhu, Zi-chen;Gu, Ding-cheng
    • Advances in Computational Design
    • /
    • 제1권1호
    • /
    • pp.27-35
    • /
    • 2016
  • The influences of chloride-free components of the cement additive: triethanolamine, triisopropanolamine, sodium hyposulfite and calcium gluconate on the 1d, 3d and 28d compressive strength of cement were investigated by response surface methodology. It found the early strength activators, triethanolamine and sodium hyposulfite could enhance the 1d strength of cement effectively but they did not contribute to the 3d strength enhancement, and further their interaction was able to decrease the 28d strength of cement. Calcium gluconate was not that effective for the strength enhancement on 3 and 28 days when it's simply dosed. However the interaction effect of calcium gluconate with triisopropanolamine could strongly favor the strength enhancement of cement after 3 days. Results indicated it was necessary to focus attention on the potential interactions among the chemical components. And for the concern of four chemicals studied in this paper, it was feasible to formulated a kind of chloride-free cement additive that can be effective for the early strength of cement and its the strength after 3 days.

트랜섬 선미를 가지는 선형의 포텐셜 유동해석 (Potential How Analysis for a Hull with the Transom Stern)

  • 최희종;전호환
    • 한국해양공학회지
    • /
    • 제15권1호
    • /
    • pp.1-6
    • /
    • 2001
  • This study focuses on the potential flow analysis for a hull with the transom stern. The method is based on a low order panel method. The Kelvin type free-surface boundary condition which is known to better fit experimental data for a high speed is applied. To treat a dry transom stern effect a special treatment for the free-surface boundary condition is adopted at the free-surface region after the transom stern. Trim and sinkage, which are important in high speed ships, are considered by an iterative method. Pressure and momentum approaches are used to calculate the wave resistance. Numerical calculations are performed for Athena hull and these results are compared with the experimental data and also other computational results.

  • PDF

액체 충돌제트의 표면조도변화에 따른 이상유동 열전달 특성 (Effect of Surface Roughness on Two-Phase Flow Heat Transfer by Confined Liquid Impinging Jet)

  • 임성환;신창환;조형희
    • 설비공학논문집
    • /
    • 제17권8호
    • /
    • pp.714-721
    • /
    • 2005
  • The water jet impingement cooling with boiling is one of the techniques to remove heat from high heat flux equipments. The configuration of surface roughness is one obvious condition of affecting the performance on heat transfer in nucleate boiling, The present study investigates the water jet impinging single-phase convection and nucleate boiling heat transfer for the effect of surface roughness to enhance the heat transfer in free surface and submerged jet. The distributions of the averaged wall temperature as well as the boiling curves are discussed. Jet velocities are varied from 0.65 to 1.7 m/s. Surface roughness by sand blast and sand paper varies from 0.3 to 2.51 ${\mu}m$ and cavity shapes on surface are semi-circle and v-shape, respectively The results showed that higher velocity of the jet caused the boiling incipience to be delayed more. The incipient boiling and heat transfer increase with increasing surface roughness due to a large number of cavities of uniform size.

3차원 절삭에서 표면환경이 절삭기구에 미치는 영향 (The Effect of Surface Environment on the Mechanism in Oblique Cutting)

  • 서남섭
    • 한국정밀공학회지
    • /
    • 제1권2호
    • /
    • pp.24-32
    • /
    • 1984
  • The object of the study is to discuss the effect of magic ink as a surface active substance on the mechanism of chip formation in oblique cutting. The Rehbinder effect has been known as a phenomenon that the mechanical strength reduces when the metal is coated with some surface active substances. In order to interpret these surface effects defined by Rehbinder, the influence on the shear strength of shear plane by coating surface active substances, cutting force by the depth of cut, surface roughness and hardness ratio were observed. The results are as follows: 1. By coating the magic ink on free surface of the forming chip, the effective shear angle increases, and the cuttinbg force and the deformed chip thickness decreases. 2. With the large inclination angle the effective shear angle increases, and the specific cutting force and the friction angle decrease. 3. Cutting of the coated surface improves the surface roughness and the hardness ratio drops, which means another Rehbinder effect.

  • PDF

표면 효과를 고려한 극박 SS304 스테인리스 강판의 굽힘 거동 분석 (Analysis of Bending Behavior of Ultra-thin SS304 Stainless Steel Sheets Considering the Surface Effect)

  • 정재봉;채준열;정양진;김지훈
    • 소성∙가공
    • /
    • 제29권6호
    • /
    • pp.323-330
    • /
    • 2020
  • The surface region of a sheet metal may have different characteristics from the inner region because the surface region is less restricted than the interior. In addition, the grains on the free surface are less hardened because of surface adsorption of the dislocations, rather than piling up. In the case of bulk or thick sheet metals, this effect is negligible because the fraction of the surface region is much smaller than that of the inner region. However, this surface effect is important in the case of ultra-thin sheet metals. In order to evaluate the surface effect, tensile and bending tests were performed for the SS304 stainless steel with a thickness of 0.39 mm. The bending force predicted using the tensile behavior is higher than the measurement because of the surface effect. To account for the surface effect, the surface layer model was developed by dividing the sheet section into surface and inner layers. The mechanical behaviors of the two regions were calibrated using the tensile and bending properties. The surface layer model reproduced the bending behavior of the ultra-thin sheet metal.

Antibacterial and Antibiofilm Effect of Cell-Free Supernatant of Lactobacillus brevis KCCM 202399 Isolated from Korean Fermented Food against Streptococcus mutans KCTC 5458

  • Kim, Jong Ha;Jang, Hye Ji;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권1호
    • /
    • pp.56-63
    • /
    • 2022
  • This study aims to determine the antibiofilm effect of cell-free supernatant (CFS) of Lactobacillus brevis strains against Streptococcus mutans strains. To study the antibiofilm mechanism against S. mutans strains, antibacterial effects, cell surface properties (auto-aggregation and cell surface hydrophobicity), exopolysaccharide (EPS) production, and morphological changes were examined. The antibiofilm effect of L. brevis KCCM 202399 CFS as morphological changes were evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), compared with the control treatment. Among the L. brevis strains, L. brevis KCCM 202399 showed the highest antibiofilm effect on S. mutans KCTC 5458. The antibacterial effect of L. brevis KCCM 202399 against S. mutans KCTC 5458 was investigated using the deferred method (16.00 mm). The minimum inhibitory concentration of L. brevis KCCM 202399 against S. mutans KCTC 5458 was 25.00%. Compared with the control treatment, L. brevis KCCM 202399 CFS inhibited the bacterial adhesion of S. mutans KCTC 5458 by decreasing auto-aggregation, cell surface hydrophobicity, and EPS production (45.91%, 40.51%, and 67.44%, respectively). L. brevis KCCM 202399 CFS inhibited and eradicated the S. mutans KCTC 5458 biofilm. Therefore, these results suggest that L. brevis KCCM 202399 CFS may be used to develop oral health in the probiotic industry.

Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

  • Moshari, Shahab;Nikseresht, Amir Hossein;Mehryar, Reza
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.219-235
    • /
    • 2014
  • With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF) scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method) for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.

평판에 충돌하는 원형분류의 공력소음에 관한 실험적 연구 (Au Experimental Study on the Aerodynamic Noise by a Circular Jet Impinging on a Plate)

  • 이동훈;권영필;한희갑
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.71-79
    • /
    • 1997
  • The objective of this study is to investigate experimentally the effect of surface conditions of the plate on the impinging jet noise. The experimental results about the spectrum, the sound pressure level and the directivity are pressented and discussed in relation with the surface conditions. Regardless of the surface conditions, the pure tones of high level are generated at the same frequency band and the overall sound power level of impinging jets is much higher than that of the free jet. However, the velocity dependence of the sound pressure level and the directivity are different between smooth surfaces and rough surfaces. The dependence of sound pressure level on the jet velocity shows that the smooth surface generates quadrupole-type sound like free jets. However, the perforated or the rough surface radiates sound power exactly proportional to the sixth power of the jet velocity, indicating that the source is fixed dipole type. The directivities of 1/3 octave band sound pressure level for both the free and impinging jet show the peak directivity at 115$^\circ$ upstream, probably due to the refraction associated with velocity gradient.

  • PDF