• Title/Summary/Keyword: Free Cooling

Search Result 264, Processing Time 0.028 seconds

Continuous Cooling Transformation, Microstructure and Mechanical Properties of High-Strength Low-Alloy Steels Containing B and Cu (B과 Cu가 포함된 고강도 저합금강의 연속냉각 변태와 미세조직 및 기계적 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.525-530
    • /
    • 2013
  • This study investigated the continuous cooling transformation, microstructure, and mechanical properties of highstrength low-alloy steels containing B and Cu. Continuous cooling transformation diagrams under non-deformed and deformed conditions were constructed by means of dilatometry, metallographic methods, and hardness data. Based on the continuous cooling transformation behaviors, six kinds of steel specimens with different B and Cu contents were fabricated by a thermomechanical control process comprising controlled rolling and accelerated cooling. Then, tensile and Charpy impact tests were conducted to examine the correlation of the microstructure with mechanical properties. Deformation in the austenite region promoted the formation of quasi-polygonal ferrite and granular bainite with a significant increase in transformation start temperatures. The mechanical test results indicate that the B-added steel specimens had higher strength and lower upper-shelf energy than the B-free steel specimens without deterioration in low-temperature toughness because their microstructures were mostly composed of lower bainite and lath martensite with a small amount of degenerate upper bainite. On the other hand, the increase of Cu content from 0.5 wt.% to 1.5 wt.% noticeably increased yield and tensile strengths by 100 MPa without loss of ductility, which may be attributed to the enhanced solid solution hardening and precipitation hardening resulting from veryfine Cu precipitates formed during accelerated cooling.

Design and transient analysis of a compact and long-term-operable passive residual heat removal system

  • Wooseong Park;Yong Hwan Yoo;Kyung Jun Kang;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4335-4349
    • /
    • 2023
  • Nuclear marine propulsion has been emerging as a next generation carbon-free power source, for which proper passive residual heat removal systems (PRHRSs) are needed for long-term safety. In particular, the characteristics of unlimited operation time and compact design are crucial in maritime applications due to the difficulties of safety aids and limited space. Accordingly, a compact and long-term-operable PRHRS has been proposed with the key design concept of using both air cooling and seawater cooling in tandem. To confirm its feasibility, this study conducted system design and a transient analysis in an accident scenario. Design results indicate that seawater cooling can considerably reduce the overall system size, and thus the compact and long-term-operable PRHRS can be realized. Regarding the transient analysis, the Multi-dimensional Analysis of Reactor Safety (MARS-KS) code was used to analyze the system behavior under a station blackout condition. Results show that the proposed design can satisfy the design requirements with a sufficient margin: the coolant temperature reached the safe shutdown condition within 36 h, and the maximum cooling rate did not exceed 40 ℃/h. Lastly, it was assessed that both air cooling and seawater cooling are necessary for achieving long-term operation and compact design.

Numerical Analysis of Simultaneous Cooling Process of Upper and Lower Side of Running Hot Steel Strip (주행하는 고온 강재의 상하부 동시 냉각 과정 수치해석)

  • Kwon, Myeon Jae;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1051-1056
    • /
    • 2014
  • After hot rolling, a high-temperature steel plate with a temperature higher than $800^{\circ}C$ is rapidly cooled by multiple circular water jets. In this cooling process, because the temperature of the steel plate is much higher than the boiling point of the cooling water, film-boiling heat transfer occurs and a very thin steam layer forms between the plate surface and the cooling water. The steam layer acts as a thermal resistance that prevents heat transfer between the cooling water and the steel plate. In addition to the film-boiling heat transfer, complex physical phenomena such as the free-surface flow of residual water that accumulated on the material and the material's high-speed motion also occur in the cooling process. In this study, the simultaneous cooling process of the upper and lower sides of a running hot steel strip is investigated using a three-dimensional numerical model and the cooling performances and characteristics of the upper-side cooling and lower-side cooling are compared.

Lead-Free Solders and Processing Issues Relevant to Microelectronics Packaging

  • Kang, Sung K.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.09a
    • /
    • pp.147-163
    • /
    • 2003
  • European Union bans the usage of Pb in electronics from July 1 st, 2006. The Near-eutectic Sn-Ag-Cu alloys are the leading candidate Pb-free solders (for SMT card assembly). .The microstructure of Sn-Ag-Cu alloys is discussed in terms of solidification, composition and cooling rate. Methods of controlling Ag3Sn plates are discussed. .Thermo-mechanical fatigue behaviors of Sn-Ag-Cu solder joints are reviewed. Tin pest, whisker growth, electromigration of Pb-free solders are discussed.

  • PDF

An Experimental Study of Jet Impingement Cooling on the Semi-Circular Concave Surface (반원 오목면에 분사되는 제트충돌 냉각에 관한 실험적 연구)

  • 양근영;최만수;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1083-1094
    • /
    • 1995
  • An experimental study has been carried out for jet-impingement cooling on the semi-circular concave surface. Two different nozzles(round edged nozzle and rectangular edged nozzle) are utilized and heat transfer coefficients on the concave surface have been measured under a constant heat flux condition. The characteristics of heat transfer has been discussed in conjunction with measured jet flow. Velocity and turbulence intensity of free jets issuing from two different nozzles have been measured by Laser Doppler Anemometry and theromocouple measurements have been done for temperatures on the concave surface. The effects of the nozzle shape, the distance between the nozzle exit and the stagnation point of the surface and the nozzle exit velocity on heat transfer were studied.

Aerodynamic Noise Prediction of Automobile Engine Cooling Fan Noise (자동차 엔진 냉각홴의 공력 소음 예측에 관한 연구)

  • Lee, Jeonghan;Cho, Kyungseok;Sun, Hyosung;Shin, Hyungki;Lee, Soogab
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.115-120
    • /
    • 1998
  • Aerodynamic noise generated by automobile cooling fan is investigated. Automobile cooling fans radiate both discrete frequency noise as well as broadband noise. In the present work, the former is considered through free-wake panel method coupled with acoustic analogy fully considering the retarded time variation on the blade surface, while the latter is taken into account by three well-established broadband noise components. Experiments were performed to supplement necessary inputs as well as to provide the final comparison with the predicted noise spectrum. The predicted noise levels at blade passing frequencies agree well with the experimental data for the first few harmonics. Although the predicted broadband noise levels at higher frequencies fall below the experimental data due to the fundamental shortcomings of the utilized formulations, the analysis offers a detailed physical understanding of the fan noise generation processes.

  • PDF

Development of Fin Expansion Type Cooling System using Heat Pipes for LED Lightings (히트파이프를 적용한 LED조명용 핀확장형 냉각시스템 개발)

  • Jung, T.S.;Kang, H.K.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.131-137
    • /
    • 2012
  • With the advantages of power savings, increased life expectancy and fast response time over traditional incandescent bulb, LEDs are increasingly used for many applications including automotive, aviation, display, and special lighting applications. Since the high heat generation of LED chips can reduce service life, degrade luminous efficiency, and cause variation of color temperature, many studies have been carried out on the optimization of LED packaging and heat sinks. In this study, a fin expansion type cooling device using heat pipe, instead of a solid aluminum heat sink, was designed for LED security lightings based on thermal resistance analysis. Numerical analysis and experimental validation were carried out to evaluate its cooling performance.

Test of the Conduction Cooling System for HTS SMES (고온 초전도 SMES용 전도냉각시스템 특성시험)

  • Yeom, Han-Kil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.62-66
    • /
    • 2008
  • The characteristic of the superconducting magnetic energy storage(SMES) system is faster response, longer life time, more economical, and environment friendly than other uninterruptible power supply(UPS) using battery. So, the SMES system can be used to develop methods for improving power quality where a short interruption of power could lead to a long and costly shutdown. Recently, cryogen free SMES has developed using BSCCO(Bismuth Strontium Calcium Copper Oxide) wire. We fabricated and tested the conduction cooling system for the 600 kJ class HTS SMES. The experiment was accomplished for the simulation coils. The simulation coils were made of aluminium, it is equivalent to thermal mass of 600 kJ HTS SMES coil. The coil is cooled with two GM coolers through the copper conduction bar. In this paper, we report that the test results of cool-down and heat loads characteristics of the simulation coils. The developed conduction cooling system adapted to 600 kJ HTS SMES system and cope with the unexpected sudden heat impact, too.

Effect of Water Quality of Cooling Tower on Legionella pneumophila Disinfection Using Ru/Ti Electrode (냉각탑수 수질이 Ru/Ti 전극을 이용한 Legionella pneumophila 소독에 미치는 영향)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.581-589
    • /
    • 2008
  • This study was carried out to evaluate the effect of water quality of cooling tower on Legionella pneumophila disinfection using Ru/Ti electrode. The influences of parameters such as pH, turbidity, $CaCO_3$ and TOC were investigated using laboratory scale batch reactor. Oxidants such as free Cl, $ClO_2,\;H_2O_2\;and\;O_3$ were measured. The results showed that all of the water quality parameters of cooling tower had deteriorated disinfection of Legionella pneumophila. When the turbidity, $CaCO_3$ and TOC was increased, oxidants which was generated during electrolysis was decreased. pH, free Cl, $ClO_2\;and\;H_2O_2$ concentration were decreased with the increase of pH, whereas $O_3$ concentration was increased with the increase of pH. The order of effect of water quality on the disinfection performance for Legionella pneumophila was turbidity > $CaCO_3$ > TOC > pH. To obtain the safety standard (1000 CFU/L), the simultaneous increase current and NaCl dosage was needed.

Performance and Reliability Characteristics of the Free Piston Free Displacer Stirling Cryocooler

  • Park, Seong-Je;Hong, Yong-Ju;Kim, Hyo-Bong;Koh, Deuk-Yong;Kim, Yang-Hoon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.46-51
    • /
    • 2004
  • This paper presents the results of a series of performance and reliability tests for the Stirling cryocooler. Infrared sensor systems incorporating cryocoolers are required to be qualified to the appropriate specification for the performance and reliability. FPFD Stirling cryocooler is currently under development for cooling infrared detector. Manufactured Stirling cryocooler delivers approximately 0.9W cooling at 80K for 30W∼40W of input power. It takes approximately 2 minutes to cool down to 80K at the ambient temperature of 23$^{\circ}C$. Performance characteristics for the vibration, acoustic noise, EMI and leak rate of the Stirling cryocooler are evaluated. We performed low and high temperature keeping test from -32$^{\circ}C$ to +52$^{\circ}C$ and operating test at high and low temperature cyclic range with acceptance tests performed at scheduled intervals. Cooling capacity is determined as a function of the temperatures at the compressor, hot end and cold tip at the expander. Finally, we describe the experimental facility for the MTTF evaluation and some typical results of the Stirling cryocooler.