• Title/Summary/Keyword: Framed structures

Search Result 262, Processing Time 0.029 seconds

A two-step approach for joint damage diagnosis of framed structures using artificial neural networks

  • Qu, W.L.;Chen, W.;Xiao, Y.Q.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.581-595
    • /
    • 2003
  • Since the conventional direct approaches are hard to be applied for damage diagnosis of complex large-scale structures, a two-step approach for diagnosing the joint damage of framed structures is presented in this paper by using artificial neural networks. The first step is to judge the damaged areas of a structure, which is divided into several sub-areas, using probabilistic neural networks with natural Frequencies Shift Ratio inputs. The next step is to diagnose the exact damage locations and extents by using the Radial Basis Function (RBF) neural network with the second Element End Strain Mode of the damaged sub-area input. The results of numerical simulation show that the proposed approach could diagnose the joint damage of framed structures induced by earthquake action effectively and has reliable anti-jamming abilities.

Sensitivity Analysis Related to Redundancy of Regular and Irregular Framed Structures after Member Disappearance

  • Ito, Takumi;Takemura, Toshinobu
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.4
    • /
    • pp.297-304
    • /
    • 2014
  • Recently, there have been some reported examples of structural collapse due to gravity, subsequent to damage from accident or an excitation that was not prepared for in the design process. A close view of new concepts, such as a redundancy and key elements, has been taken with the aim of ensuring the robustness of a structure, even in the event of an unexpected disturbance. The author previously proposed a sensitivity index of the vertical load carrying capacity to member disappearance for framed structures. The index is defined as the ratio of the load carrying capacity after a member or a set of an adjacent member disappears, to the original load carrying capacity. The member with the highest index may be regarded as a key element. The concept of bio-mimicry is being applied to various fields of engineering, and tree-shaped structures are sometimes used for the design of building structures. In this study a sensitivity analysis is applied to the irregular-framed structures such as tree-shaped structures.

Earthquake ductility and overstrength in residential structures

  • Gad, E.F.;Chandler, A.M.;Duffield, C.F.;Hutchinson, G.L.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.4
    • /
    • pp.361-382
    • /
    • 1999
  • This paper reviews aspects of current design procedures for seismic design of structures, and specifically examines their relevance to the design of light framed residential buildings under earthquake loading. The significance of the various structural contributions made by the components of cold formed steel framed residential structures subjected to earthquake induced loadings has been investigated. This is a common form of residential construction worldwide. Particular attention is given to aspects related to ductility and overstrength, the latter arising principally from the contributions of the designated "non-structural" components. Based on both analytical and experimental data obtained from research investigations on steel framed residential structures, typical ranges of the ductility reduction factor and overstrength ratios are determined. It is concluded that the latter parameter has a very significant influence on the seismic design of such structures. Although the numerical ranges for the inelastic seismic parameters given in this paper were obtained for Australian houses, the concepts and the highlighted aspects of seismic design methodology are more widely applicable.

Optimum Design of Composite Framed Structures Based Reliability Index (신뢰성지수를 고려한 합성 뼈대구조물의 최적설계에 관한 연구)

  • Jung, Young Chae;Kim, Jong Gil
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.389-401
    • /
    • 2003
  • The purpose of this study is to develop an algorithm, which can be designed the optimal sections of the composite framed structures constituted with the beams and the columns consisted of H type of steel section and concrete considering the reliability index. The optimized problem or the composite framed structures is formulated with the objective function and the constraints taking the section sizes as the design variables. The objective functions are constituted by the total costs of constructions. Also, the constraints are derived by considering the reliability index of section stress and allowable stress. The algorithm optimized the section of the composite framed structures utilizes the SUMT method using the modified Newton-Raphson direction method. The optimizing algorithm developed in this study is applied to the numerical examples with respecting a one-bay, one-story composite framed structure and a one-bay five-story one for the practical utilization of design on the composite framed structures using the reliability indices$({\beta})$ three and zero. In addition, their numerical results are compared and analyzed to examine the possibility of optimization the applicability, and the convergence this algorithm.

Wooden framed structures with semi-rigid connections: Quantitative approach focused on design needs

  • Santana, C.L.O.;Mascia, N.T.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.315-331
    • /
    • 2009
  • Mechanical connections are recognized as extremely important elements in the aspect of strength and structural safety. However, classical structural model does not consider the connection stiffness properties, and are based on models with pinned or rigid joints only. In fact, mechanical connections are deformable and behave not linearly, affecting the whole structure and inducing nonlinear behavior as well. The quantification of this effect, however, depends on the description of the working of the connectors and the wood response under embedment. The theoretical modeling of wood structures with semi-rigid connections involves not only the structural analysis, but also the modeling of both single and grouped moment resisting connectors and the study of the wood properties under embedment. The proposal of this paper is to approach these aspects, and to quantitatively study the influence of the moment resistant connection in wooden framed structures. Comparisons between rigid and semi-rigid connections and between linear and nonlinear analysis lead to quantitative results.

Seismic retrofitting by base-isolation of r.c. framed buildings exposed to different fire scenarios

  • Mazza, Fabio;Mazza, Mirko
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.267-277
    • /
    • 2017
  • Base-isolation is now being adopted as a retrofitting strategy to improve seismic behaviour of reinforced concrete (r.c.) framed structures subjected to far-fault earthquakes. However, the increase in deformability of a base-isolated framed building may lead to amplification in the structural response under the long-duration horizontal pulses of high-magnitude near-fault earthquakes, which can become critical once the strength level of a fire-weakened r.c. superstructure is reduced. The aim of the present work is to investigate the nonlinear seismic response of fire-damaged r.c. framed structures retrofitted by base-isolation. For this purpose, a five-storey r.c. framed building primarily designed (as fixed-base) in compliance with a former Italian seismic code for a medium-risk zone, is to be retrofitted by the insertion of elastomeric bearings to meet the requirements of the current Italian code in a high-risk seismic zone. The nonlinear seismic response of the original (fixed-base) and retrofitted (base-isolated) test structures in a no fire situation are compared with those in the event of fire in the superstructure, where parametric temperature-time curves are defined at the first level, the first two and the upper levels. A lumped plasticity model describes the inelastic behaviour of the fire-damaged r.c. frame members, while a nonlinear force-displacement law is adopted for the elastomeric bearings. The average root-mean-square deviation of the observed spectrum from the target design spectrum together with a suitable intensity measure are chosen to select and scale near- and far-fault earthquakes on the basis of the design hypotheses adopted.

Object-Oriented Free Vibration Analysis of Plane Flamed Structures (평면 뼈대 구조물의 객체지향 자유진동해석)

  • 신영식;최희옥;서진극
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.61-68
    • /
    • 1993
  • A computer program for free vibration analysis of plane framed structures has been developed by object oriented programming technique using C" language. The object oriented programming concepts such as object, class, method and inheritance are represented. The static and free vibration analyses for framed structures were satisfactorily performed by this program which consists of TOP, VECTOR, MATRIX, STRU, GUI and other classes. Numerical test shows the validity and capability of the present study which can be expandable to develop a general purpose object oriented finite element analysis program of structures ,res ,

  • PDF

Finite-element modeling of a light-framed wood roof structure

  • Jacklin, Ryan B.;El Damatty, Ashraf A.;Dessouki, Ahmed A.
    • Wind and Structures
    • /
    • v.19 no.6
    • /
    • pp.603-621
    • /
    • 2014
  • Past high speed wind events have exposed the vulnerability of the roof systems of existing light-framed wood structures to uplift loading, contributing greatly to economic and human loss. This paper further investigates the behaviour of light-framed wood structures under the uplift loading of a realistic pressure distribution. A three-dimensional finite-element model is first developed to capture the behaviour of a recently completed full-scale experiment. After describing the components used to develop the numerical model, a comparison between the numerical prediction and experimental results in terms of the deflected shape at the roof-to-wall connections is presented to gain confidence in the numerical model. The model is then used to analyze the behaviour of the truss system under realistic and equivalent uniform pressure distributions and to perform an assessment of the use of the tributary area method to calculate the withdrawal force acting on the roof-to-wall connections.

A Study of Nonlinear Unstable Phenomenon of Framed Space Structures Considering Joint Rigidity (절점 강성을 고려한 공간 구조물의 비선형 불안정 거동에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Hwang, Kyung-Ju;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.1 s.7
    • /
    • pp.87-97
    • /
    • 2003
  • The structural system that discreterized from continuous shells is frequently used to make a large space structures. As well these structures show the unstable phenomena when a load level over the limit load, and snap-through and bifurcation are most well known of it. For the collapse mechanism, rise-span ratio, element stiffness and load mode are main factor, which it give an effect to unstable behavior. In our real situation, most structures have semi-rigid joint that has middle characteristic between pin and rigid joint. So the knowledge of semi-rigid joint is very important problem of stable large space structure. And the instability phenemena of framed space structures show a strong non-linearity and very sensitive behavior according to the joint rigidity For this reason In this study, we are investigating to unstable problem of framed structure with semi-rigidity and to grasp the nonlinear instability behavior that make the fundamental collapse mechanism of the large space frame structures with semi-rigid joint, by proposed the numerical analysis method. Using the incremental stiffness matrix in chapter 2, we study instability of space structures.

  • PDF

An Efficient Analysis of Framed-Tube Structures (고층 튜브 구조물의 효율적 해석)

  • 이동근;김남희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.133-138
    • /
    • 1992
  • The three dimensional analysis of Framed-Tube structures is neither easy nor efficient because of longer computational time, large memory requirement, tedious input preparation and bulky output. An efficient analysis model for framed-tube structure is proposed in this study. The proposed model can save the computational effort by using the assumption of the rigid floor diaphragm effect and matrix condensation technique. Moreover, it is develpoed by assembling two dimensional frames using the link degrees of freedom which are temporary used to satisfy the vertical displacement compatibility at the corners of a framed-tube. The accuracy and the efficiency of this analytical model is established by comparing with the results using the computer code SAPIV which is based on the three dimensional finite element model.

  • PDF