• Title/Summary/Keyword: Framed slot ALOHA

Search Result 12, Processing Time 0.014 seconds

Dynamic FSA Algorithm for Fast Tag Identification in RFID Systems (RFID 시스템에서 고속 태그 식별을 위한 동적 FSA 알고리즘)

  • Lim In-Taek;Choi Jin-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.806-811
    • /
    • 2006
  • In RFID system, when multiple tags respond simultaneously, a collision can occur. A method that solves this collision is referred to as anti-collision algorithm. Among the existing anti-collision algorithms, SFSA, though simple, has a disadvantage that when the number of tags is variable, the system performance degrades because of the fixed frame size. This paper proposes a new anti-collision algorithm called DFSA which determines the optimal frame size using the number of collided slots at every frame. According to the simulation results, the tag identification time of the proposed algorithm is faster than that of SFSA.

A Message Reduction Method for Performance Improvement of the ISO/IEC 18000-7 based Active RFID System (ISO/IEC 18000-7 기반 능동형 RFID 시스템의 성능 개선을 위한 메시지 감소 기법)

  • Yoon, Won-Ju;Chung, Sang-Hwa;Kang, Su-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1459-1467
    • /
    • 2009
  • In this paper, we propose a novel method for improving the tag collection performance in active RFID systems by modifying the tag collection algorithm in the ISO/IEC 18000-7 standard. The proposed method enables to reduce the time slot size by reducing the response message size from the tag and to decrease the number of command messages from the reader throughout the tag collection process. This results in reducing the time required for tag collection and the battery consumption on tags by decreasing the total amount of messages. Via the simulation experiments, we evaluated the performance of the tag collection applied with the proposed method, compared with that of the basic tag collection complying with the standard. The simulation results showed that the proposed method could decrease the total amount of messages between the reader and tags dramatically and reduce the average tag collection time by 19.99% and 16.03% when the reader requested the additional data of 50 bytes and 100 bytes from the tags, respectively.