• Title/Summary/Keyword: Frame-based Model

Search Result 1,103, Processing Time 0.022 seconds

Design of Grinding Datab ase Based on the Frame Model (후레임 모델에의한 연삭가공용 데이터베이스의 설계)

  • 김건희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.102-106
    • /
    • 1997
  • Grinding has difficulty in satisfying the qualitative knowledge based on the skilled expert as well as quantitative data for all user. Design of grinding database is based on the frame-based model for utilizing the empirical and qualitative knowledge. Inthis paper, basic strategy to develop the grinding database by frame-based model, which is strongly dependent upon experience and intuition, frame-base model, which is strongly dependent upon experience and intuition, is described. Design of grinding database is based on the frame-based model for utilizing the ambiguous knowledge and inference is accomplised by the object-oriented paradigm system.

  • PDF

Design of Grinding Database by Taking Frame-Based Model (후레임 모델에 의한 연삭가공용 데이터 베이스의 설계)

  • 김건희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.107-113
    • /
    • 1998
  • Grinding operation has difficulty in satisfying the qualitative knowledge based on the skilful expert as well as the quantitative data for all user. Design of grinding database based on the frame-based model is more effective method for utilizing the empirical and qualitative knowledge. In this paper. basic strategy to develop the grinding database by taking frame-based model, which is strongly dependent upon experience and intuition, is described. Grinding database based on the frame based model for designing the interaction and inference among the slots is accomplised by the object-oriented paradigm system.

  • PDF

Space Frame Integrated Design System based on PATRAN Database (PATRAN 데이타베이스를 기반으로 한 스페이스 프레임의 통합설계시스템)

  • Lee Jae Hong;Lee Joo Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.210-215
    • /
    • 1998
  • To design a space frame structure by the conventional method is not easy in practical sense since it is generally a three-dimensional complicated form, and stability and nonlinear problems are not easily checked in the design process. This paper describes two modules, the Model Generator which is based on PATRAN user interface that enables users to generate a complicated finite element model; the Optimum Design Module which analyzes output results of analysis program, and designs members of a space frame. The Model Generator is based on PCL while C++ language is used in the Optimum Design Module. Structural analysis is performed by using ABAQUS. All of these modules constitute Space Frame Integrated Design System. The Core of the system is PATRAN database, in which the Model Generator creates information of a finite element model. Then, PATRAN creates input files needed for the analysis program from the information of the finite element model in the database, and in turn, imports output results of analysis program to the database. Finally, the Optimum Design Module processes member grouping of a space frame based on the output results, and performs optimal member selection of a space frame. This process is repeated until the desired optimum structural members are obtained.

  • PDF

A Hexagon Model-based Efficient Beacon Scheduling Approach for Wireless Sensor Networks

  • Lee, Taekkyeun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.9
    • /
    • pp.43-50
    • /
    • 2018
  • In this paper, we propose a hexagon model-based efficient beacon frame scheduling approach for wireless sensor networks. The existing beacon frame scheduling approaches use a lot of slots and subslots for the beacon frame scheduling. Thus, the data from source nodes are not efficiently delivered to a sink node. Also in case a sink node needs to broadcast a beacon frame to the nodes in the network, delivering the beacon frame to the network nodes is not efficient as well. Thus, to solve the problem, we use a hexagon model to find the number of slots and subslots for the beacon frame scheduling. By using them for the beacon frame scheduling, the proposed approach performs better than other approaches in terms of the data transmission delay, the number of received data, the beacon transmission delay and the number of relaying the beacon frames.

Surrogate Model Based Approximate Optimization of Passive Type Deck Support Frame for Offshore Plant Float-over Installation

  • Lee, Dong Jun;Song, Chang Yong;Lee, Kangsu
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.131-140
    • /
    • 2021
  • The paper deals with comparative study of various surrogate models based approximate optimization in the structural design of the passive type deck support frame under design load conditions. The passive type deck support frame was devised to facilitate both transportation and installation of 20,000 ton class topside. Structural analysis was performed using the finite element method to evaluate the strength performance of the passive type deck support frame in its initial design stage. In the structural analysis, the strength performances were evaluated for various design load conditions. The optimum design problem based on surrogate model was formulated such that thickness sizing variables of main structure members were determined by minimizing the weight of the passive type deck support frame subject to the strength performance constraints. The surrogate models used in the approximate optimization were response surface method, Kriging model, and Chebyshev orthogonal polynomials. In the context of numerical performances, the solution results from approximate optimization were compared to actual non-approximate optimization. The response surface method among the surrogate models used in the approximate optimization showed the most appropriate optimum design results for the structure design of the passive type deck support frame.

Development of Integrated Design System for Space Frame Structures (스페이스프레임 구조물의 통합설계시스템 개발)

  • Lee, Ju-Young;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.2 s.2
    • /
    • pp.59-66
    • /
    • 2001
  • This paper describes three modules for development of the Space Frame Integrated Design System(SFIDS). The Control Module is implemented to control the developed system. The Model Generation Module based on PATRAN user interface enables users to generate a complicated finite element model for space frame structures. The Optimum Design Module base on a branch of combinatorial optimization techniques which can realize the optimization of a structure having a large number of members designs optimum members of a space frame after evaluating analysis results. The Control Module and the Model Generation Module Is implemented by PATRAN Command Language(PCL) while C++ language is used in the Optimum Design Module. The core of the system is PATRAN database, in which the Model Generation Module creates information of a finite element model. Then, PATRAN creates Input files needed for the analysis program from the information of the finite element model in the database, and in turn, imports output results of analysis program to the database. Finally, the Optimum Design Module processes member grouping of a space frame based on the output results, and performs optimal member selection of a space frame. This process is repeated until the desired optimum structural members are obtained.

  • PDF

Robust Video-Based Barcode Recognition via Online Sequential Filtering

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 2014
  • We consider the visual barcode recognition problem in a noisy video data setup. Unlike most existing single-frame recognizers that require considerable user effort to acquire clean, motionless and blur-free barcode signals, we eliminate such extra human efforts by proposing a robust video-based barcode recognition algorithm. We deal with a sequence of noisy blurred barcode image frames by posing it as an online filtering problem. In the proposed dynamic recognition model, at each frame we infer the blur level of the frame as well as the digit class label. In contrast to a frame-by-frame based approach with heuristic majority voting scheme, the class labels and frame-wise noise levels are propagated along the frame sequences in our model, and hence we exploit all cues from noisy frames that are potentially useful for predicting the barcode label in a probabilistically reasonable sense. We also suggest a visual barcode tracking approach that efficiently localizes barcode areas in video frames. The effectiveness of the proposed approaches is demonstrated empirically on both synthetic and real data setup.

Tracking Moving Objects Using an Active Contour Model Based on a Frame Difference Map (차 영상 맵 기반의 능동 윤곽선 모델을 이용한 이동 물체 추적)

  • 이부환;전기준
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.153-156
    • /
    • 2003
  • This paper proposes a video tracking method for a deformable moving object using an active contour model. In order to decide the convergent directions of the contour points automatically, a new energy function based on a frame difference map and an updating rules of the frame difference map are presented. Experimental results on a set of synthetic and real image sequences showed that the proposed method can fully track a speedy deformable object while extracting the boundary of the object exactly in every frame.

  • PDF

Durability Design of a Passenger Car Front Aluminum Sub-frame using Virtual Testing Method (가상시험기법을 이용한 승용차 전륜 알루미늄 서브프레임 내구설계)

  • Nam, Jin-Suk;Shin, Hang-Woo;Choi, Gyoo-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.368-375
    • /
    • 2012
  • Durability performance evaluation of automotive components is very important and time consuming task. In this paper, to reduce vehicle component development time and cost virtual testing simulation technology is used to evaluate durability performance of a passenger car front aluminum sub-frame. Multibody dynamics based vehicle model and virtual test simulation model of a half car road simulator are validated by comparisons between rig test results and simulation results. Durability life prediction of the sub-frame is carried out using the model with road load data of proving ground which can evaluate accelerated durability life. We found that the durability performance of the sub-frame is sufficient and it can be predicted within short time compared to rig test time.

Precise-Optimal Frame Length Based Collision Reduction Schemes for Frame Slotted Aloha RFID Systems

  • Dhakal, Sunil;Shin, Seokjoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.165-182
    • /
    • 2014
  • An RFID systems employ efficient Anti-Collision Algorithms (ACAs) to enhance the performance in various applications. The EPC-Global G2 RFID system utilizes Frame Slotted Aloha (FSA) as its ACA. One of the common approaches used to maximize the system performance (tag identification efficiency) of FSA-based RFID systems involves finding the optimal value of the frame length relative to the contending population size of the RFID tags. Several analytical models for finding the optimal frame length have been developed; however, they are not perfectly optimized because they lack precise characterization for the timing details of the underlying ACA. In this paper, we investigate this promising direction by precisely characterizing the timing details of the EPC-Global G2 protocol and use it to derive a precise-optimal frame length model. The main objective of the model is to determine the optimal frame length value for the estimated number of tags that maximizes the performance of an RFID system. However, because precise estimation of the contending tags is difficult, we utilize a parametric-heuristic approach to maximize the system performance and propose two simple schemes based on the obtained optimal frame length-namely, Improved Dynamic-Frame Slotted Aloha (ID-FSA) and Exponential Random Partitioning-Frame Slotted Aloha (ERP-FSA). The ID-FSA scheme is based on the tag set estimation and frame size update mechanisms, whereas the ERP-FSA scheme adjusts the contending tag population in such a way that the applied frame size becomes optimal. The results of simulations conducted indicate that the ID-FSA scheme performs better than several well-known schemes in various conditions, while the ERP-FSA scheme performs well when the frame size is small.