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Abstract

We consider the visual barcode recognition problem in a noisy video data setup. Unlike
most existing single-frame recognizers that require considerable user effort to acquire clean,
motionless and blur-free barcode signals, we eliminate such extra human efforts by proposing
a robust video-based barcode recognition algorithm. We deal with a sequence of noisy blurred
barcode image frames by posing it as an online filtering problem. In the proposed dynamic
recognition model, at each frame we infer the blur level of the frame as well as the digit
class label. In contrast to a frame-by-frame based approach with heuristic majority voting
scheme, the class labels and frame-wise noise levels are propagated along the frame sequences
in our model, and hence we exploit all cues from noisy frames that are potentially useful
for predicting the barcode label in a probabilistically reasonable sense. We also suggest a
visual barcode tracking approach that efficiently localizes barcode areas in video frames. The
effectiveness of the proposed approaches is demonstrated empirically on both synthetic and
real data setup.
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1. Introduction

In recent years, the barcodes have become ubiquitous in many diverse areas such as logistics,
post services, warehouses, libraries, and stores. The success of barcodes is mainly attributed
to easily machine-read representation of data that aautomates and accelerates the tedious task
of identifying/managing a large amount of products/items.

In barcodes, data are typically represented as images of certain unique and repeating one-
dimensional (1D) or two-dimensional (2D) patterns. The task of retrieving data from these
signal patterns is referred to as barcode recognition, and designing a fast, accurate, and robust
recognizers is of significant importance. Although traditional optical laser barcode readers are
highly accurate and reliable, these devices are often very expensive and not very mobile.

Because of the availability of inexpensive camera devices (e.g., in mobiles or smartphones),
image-based barcode recognition has become considerably attractive. Recently considerable
research work has been conducted on this subject. Here we briefly list some recent image-
based barcode localization/recognition methods. In [1] block-wise angle distributions were
considered for localizing barcode areas. A region-based analysis was employed in [2] whereas
discrete cosine transformation was exploited in [3]. Image processing techniques including
morphology, filtering, and template matching were serially applied in [4]. The computational
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efficiency was recently considered by focusing on both turning
points and inclination angles [5].

However, most existing image-based barcode recognition
systems assume a single barcode image as input, and require it
to be relatively high quality with little blur or noise for accurate
recognition. The drawbacks, also shared by optical readers, are
clearly the extra human effort needed to capture a good-quality
still picture and consequently the delayed reading time.

In this paper, we consider a completely different yet realistic
setup: the input to the recognizer is a video of a barcode (i.e.,
a sequence of image frames) where the frames are assumed
to be considerably blurred and noisy. Hence with this setup,
we eliminate the extra effort needed to acquire motionless,
clean and blur-free image shots. Our main motivation is that
although it is ambiguous and difficult to recognize barcodes
from each single, possibly corrupted frame, we can leverage
the information or cues extracted from entire frames to make a
considerably accurate decision about the barcode labels.

Perhaps the most straightforward approach for recognizing
barcodes in video frames is a key-frame selector, that basically
selects the so-called key frames with least blur/noise, and then
applying off-the-shelf single-image recognizer in series. The
potential conflict of differently predicted codes across the key
frames can be addressed by majority voting. However, such
approaches can raise several technical issues: i) how would you
judge rigorously which frames should be preferrably selected
and ii) which voting schemes are the most appropriate with
theoretical underpinnings? Moreover, the approach may fail to
exploit many important frames that contain certain discrimina-
tive hints about the codes.

Instead, we tackle the problem in a more principled manner.
We consider a temporal model for a sequence of barcode image
frames, similar to the popular hidden Markov model (HMM).
The HMMs were previously applied to visual pattern recogni-
tion problems [6–10]. In our model, we introduce hidden state
variables that encode the blur/noise levels of the corresponding
frames, and impose smooth dynamics over those hidden states.
The observation process, contingent on the barcode label class,
is modeled as a Gaussian density centered at the image/signal
pattern of the representing class with the perturbation parameter
(i.e., variance) determined from the hidden state noise level.

Within this model, we perform (online) sequential filtering to
infer the most probable barcode label. As this inference proce-
dure essentially propagates the belief on the class label as well
as the frame noise levels along the video frames, we can exploit
all cues from noisy frames that are useful for predicting the

Figure 1. (Top) Example EAN-13 barcode image that encodes 12-
digit barcodes (a1..12) with the checksum digit c. (Bottom) Encoding
scheme for each digit.

barcode label in a probabilistically reasonable sense. Thus the
issues and drawbacks of existing approaches can be addressed
in a principled manner.

The paper is organized as follows. We briefly review barcode
specifications (focusing on 1D EAN13 format) and describe
conventional procedures for barcode recognition in Section 2.
In our video-based data setup, the task of barcode localization
(detection) must be performed for a series of frames, and we
pose it as a tracking problem solved by a new adaptive visual
tracking method in Section 3. Then in Section 4, we describe
the proposed online sequence filtering approach for barcode
recognition, The experimental results follow in Section 5.

2. One-Dimensional Barcodes

Although 2D barcode technologies are now emerging, in this
paper we deal with 1D barcodes for simplicity. As it is straight-
forward to extend it to 2D signals, we have left it for future
work. In 1D barcodes, information is encoded as a set of digits
where each digit is represented as parallel black and white lines
of different widths. Although there are several different types of
coding schemes, we focus on the widely-used EAN-13 format.
The detailed specifications of EAN-13 barcodes are described
here.

An example EAN-13 barcode image is shown in the top
panel of Figure 1, where the black and white stripes encode 12-
digit barcodes (a1..12) with the checksum digit c as also shown
at the bottom. In fact, the barcode stripes encodes 12 digits
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of a2..12 and c while the first code a1 can be easily retrieved
from the checksum equation, namely c = S1 −S0 where S0 =
a1 + a3 + · · ·+ a11 + 3 ∗ (a2 + a4 + · · ·+ a12) and S1 is the
nearest 10’s multiple not less than S0. The barcode stripe image
is composed of: 1) the left-most BWB (boundary indicator),
2) 6 WBWB patterns (one for each of the left 6 digits), 3) the
middle WBWBW (left/right separator), 4) 6 BWBW patterns (one
for each of the right 6 digits), and 5) the right-most BWB (right
boundary).

How each digit is encoded is determined by the widths of
the alternating 4 B/W bar stripes (red boxes in the figure). The
specific digit encoding scheme is summarized in the bottom
panel, for instance, the digit 7 in the right part is encoded by
BWBW with widths proportional to (1,3,1,2). Note that each
digit in the left part can be encoded by either of two different
width patterns (e.g., digit 1 can be depicted as WBWB with either
(2,2,2,1) or (1,2,2,2) widths).

Hence the barcode recognition mainly estimates the bar
widths accurately from the image/signal. Of course, in an
image-based setup, one first needs to localize the barcode re-
gion, a task often referred to as barcode detection. Barcode
recognition commonly uses the tightly cropped barcode image
from a barcode detector, then to decode barcode signals. In our
video-based framework, however, the barcode detection has to
be performed for each and every frame in real time. This can
be posed as an object tracking problem. So we propose a fast
adaptive visual tracking method in the next section.

3. Barcode Tracking

In this section we deal with the visual barcode tracking problem.
Although one can invoke a barcode detector for each frame
from scratch, one crucial benefit of tracking is computational
speed-up that is critical for real-time applications. A similar
idea has arisen in the field of computer vision, known as the
object tracking problem. Numerous object tracking approaches
have been proposed, and we briefly list a few important ones
here. The main issue is modeling the target representation: a
view-based low-dimensional appearance model [11], contour
models [12], 3D models [13], mixture models [14], and kernel
representations [15, 16], are the most popular among others.

Motivated by these computer vision approaches, we suggest
a fairly reasonable and efficient barcode tracking method here.
Tracking can be seen as an online estimation problem, where
given a sequence of image frames up to current time t, denoted
byF0, . . . ,Ft, we estimate the location and the pose of the target

object (the barcode in this case) in the frame Ft. One way to
formalize the problem is the online Bayesian formulation [12],
where we estimate P(ut|Ft) at each time t = 1,2, . . . . Here ut
is the tracking state specifying the two end points (with respect
to the coordinate system of the current frame Ft) whose line
segment tightly covers the target barcode area. Typically, we
define ut = [ax, ay, bx, by]

> where the first (last) two indicates
starting (end) position. It is straightforward to read the barcode
signal zt from ut and Ft by a simple algebraic transformation
zt = ω(ut,Ft).

We consider a temporal probabilistic model for tracking
states and target appearances. We setup a Gaussian-noise
Markov chain over the tracking states, and let each state be
related to an appearance model that measures the goodness of
track (how much zt = ω(ut,Ft) looks like a barcode). Formally,
we set the state dynamics as P(ut|ut−1) =N(ut;ut−1,V0) with
some small covariance V0 for white-noise modeling. The es-
sential part is the appearance model, and we consider a generic
energy model,

P(Ft|ut) ∝ exp(−E(zt;θ)/σ20), where zt = ω(ut,Ft), (1)

whereE(zt;θ) is the energy function that assigns a lower (higher)
value when zt looks more (less) like the target model θ. The
online Bayesian tracking can then be written as the following
recursion.

P(ut|F0...t) ∝

P(Ft|ut) ·
∫
P(ut|ut−1) ·P(ut−1|F0...t−1) dut−1, (2)

with initial track P(u0|F0) can be set as a delta function deter-
mined from any conventional barcode detector. The recursion
(2) can be typically solved by the sampling-based method (e.g.,
particle filtering [12]).

Since the target barcode appearance can change over time
(mainly due to changes in illumination and camera angles/distances
or little hand shaking), it is a good strategy to adaptively change
the target model. Among various possible adaptive models, we
simply use the previous track zt−1 for the purpose of computa-
tional efficiency. Specifically, we define the energy model as
−E(zt;θ) = ||zt − zt−1||2. The number of samples (particles)
trades off the tracking accuracy against the tracking time, and
we fix it as 100 which performs favorably fast with accurate
results.

www.ijfis.org Robust Video-Based Barcode Recognition via Online Sequential Filtering | 10



International Journal of Fuzzy Logic and Intelligent Systems, vol. 14, no. 1, March 2014

0 5 10 15
80

100

120

140

160

0 5 10 15
60

80

100

120

140

0 10 20 30
0

0.2

0.4

0.6

0.8

1

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Figure 2. (Left) Endpoints (red) of the line that tightly covers the
tracked barcode. (Middle) Unnormalized intensity values for digit 1
and 7 in the left part. (Right) Normalized signals to 1-30 duration and
scaled to a range of 0-1.

4. Barcode Recognition

Once tracking is performed for the current frame, we have the
tracked end points that tightly cover the barcode (an example
is shown in the left panel of Figure 2). We read the gray-scale
intensity values along the line segment, which are regarded as
the barcode signal to analyze. Based on the prior knowledge
of the relative lengths of the left/right-most boundary stripes
as well as the middle separator, we can roughly segment the
tracked barcode signal into 12 sub-segments, each of which
corresponds to each digit’s 4 B/W stripes pattern. This can be
done simply by equal division of the line segment.

As a result, we get 12 digit patterns, one for each digit. We
show, for instance, the intensity patterns of the two digits 1 and
7 on the left part in the middle panel of Figure2. Then for each
digit, we normalize its intensity pattern with respect to: 1) a
fixed value x-axis length (say, 30) and 2) intensity normalization
such that scales up/down the intensity values to range from 0
to 1. The former can be done by interpolation/extrapolation,
while we use a simple linear scaling for the latter. The right
panel of Figure 2 depicts the normalized signals for the example
digits. In this way, the digit signals have the same length and
scale across different digits, and hence they can be contrasted
meaningfully with each other. We denote by xkt the digit pattern
signal of the k-th (k = 1, . . . ,12) digit at frame t.

From the tracking and the feature extraction procedure, we
obtain a sequence of digit pattern signals, X = x1x2 · · ·xT , one
for each digit, for T video frames. Here we drop the superscript
index k for notational simplicity. We then classify the sequence
as a digit class label y ∈ {0,1,2, . . . ,9}. This sequence classi-
fication task is performed individually and independently for
each of 12 digits in the barcode.

Instead of heuristic approach such as key-point selection,
we tackle the problem in a more principled manner. We con-

Figure 3. Model of barcode signal sequence recognition.

Figure 4. Transition probabilities for hidden state variables.

sider a temporal model augmented with the class variable y,
which essentially builds class-wise HMM. The graphical model
representation of our model is depicted in Figure 3.

In our model, we introduce the hidden state variables st (as-
sociated with each xt), where st encodes the blur/noise level
of the observation signal xt. Specifically, we consider three
different noise levels, i.e., st ∈ {1,2,3}, indicating that st = 1

for relatively clear signal, st = 3 for severe noise, and st = 2 in
between. To reflect the motion/scene smoothness property in
real videos, we also impose a smooth dynamics over the adja-
cent hidden state variables. In particular, we use a simple table
shown in Figure 4 for the transition probabilitiesP(st|st−1). We
basically placed higher (lower) values to diagonal (off-diagonal)
entries to enforce smooth noise level transition.

The crucial part is the observation modeling, where we em-
ploy a Gaussian density model whose mean and variance is
determined by the digit class y and the current noise level
st. More specifically, we set the mean of the Gaussian as the
signal code (shown in the bottom tables of Figure 1) corre-
sponding to the digit class y, where the WBWB width codes
are duration/intensity-normalized similar to that of the obser-
vation signal xt. The perturbation parameter (i.e., variance)
of the isotropic Gaussian is determined from the hidden state
noise level st. In our experiments, we fix the variances as
{σ21 = 0.5,σ22 = 1,σ23 = 4} corresponding to st = 1,2,3, re-
spectively. Note that for the digits in the left part, since there
are two possible width codes, we model them as mixtures of
two Gaussians with equal proportions and the same variance.
In summary, the observation model for xt can be written as
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follows:

P(xt|st, y) = (3){
N(mR

y ,σ
2
stI) (right part)

1
2N(mL1

y ,σ
2
stI) +

1
2N(mL2

y ,σ
2
stI) (left part)

,

where mR
y is the normalized signal code vector for the digit y

in the right table, and mLd
y for the digit y in the column d of the

left table (d = 1,2). Also, I is the identity matrix. The class
prior P(y) which we set simply as uniform distribution (i.e.,
1
10 ).

Within this model, we perform online sequential filtering to
infer the most probable barcode label y for a given sequence
X = x1 · · ·xT . That is, the most probable digit label y up to
time t can be obtained from:

y∗ = argmax
y
P(y|x1 · · ·xt), (4)

where the posterior of y can be computed recursively:

P(y|x1 · · ·xt) ∝ P(y|x1 · · ·xt−1)· (5)∑
st−1,st

P(xt|st, y)P(st|st−1)P(st−1|x1 · · ·xt−1, y).

The last quantity, namely P(st|x1 · · ·xt, y) is the well-known
forward inference for the HMM corresponding to the class y
(detailed derivations cab be found in [17]). In our model, it is
also possible to infer the noise level at time t, i.e.,P(st|x1 · · ·xt),
from a similar recursion:

P(st|x1 · · ·xt) =
∑
y

P(st|x1 · · ·xt, y)P(y|x1 · · ·xt). (6)

In essence, the inference procedures in our model consider
the propagating beliefs on the class label as well as the frame-
wise noise levels of the video frame sequence. In turn, we are
able to exploit all the cues from noisy signal frames potentially
useful for predicting the barcode label in a probabilistically
reasonable sense. Thus the drawbacks of existing heuristic
approaches such as key-frame selection can be addressed in a
principled way.

5. Evaluation

In this section we empirically demonstrate the effectiveness of
the proposed video-based barcode recognition approach.

5.1 Synthetically Blurred Video Data

To illustrate the benefits of the proposed method, we consider a
simple synthetic experiment that simulates the noise/blur that
can be observed in real video acquisition. First, a clean un-
blurred barcode image is prepared as shown in the top-left cor-
ner of Figure 5. We then apply Gaussian filters (i.e., G(x,y) =
exp(−x

2+y2

2σ2 ) with different scales σ. The resulting noisy bar-
code video frames (of length 8) are shown in the top panel of
Figure 5. One can visually check that the frame at t = 1 is
corrupted the most severely, while the frame at t = 5 has the
lowest noise level, and so on.

As described in the previous section, we split each barcode
frame into 12 areas, one for each digit, normalize regions, and
obtain sequences of observation signal vectors x1 · · ·xT . We
show the observation vectors for three digits (the first, the third
in the left part, and the sixth in the right) at the top rows in three
bottom panels of Figure 5.

The online class filtering (i.e., P(y|x1 · · ·xt)) as well as state
(noise level) filtering (i.e., P(st|x1 · · ·xt)) is performed for each
frame t. The results are depicted in second and third rows in
each panel. For the 3rd/left digit case, the class prediction at
the early stages was highly uncertain and incorrect (i.e., y = 3

instead of true 1), however, the model corrects itself to the right
class when it observes the cleaner frame (t = 5). Although
further uncertainty was introduced after that, the final class
prediction remains correct.

In addition, in the middle panel (for the 6th/right digit case),
as the model observes more frames, the belief to the correct
class, that is, P(y = 7|x1 · · ·xt), increased, indicating that our
online filtering approach can leverage and accumulate poten-
tially useful cues from noisy data effectively. The state filtering
information is also useful. For instance, looking at the changes
of P(st|x1 · · ·xt) along t in the 1st/left digit case, the noise level
prediction visually appears to be accurate.

5.2 Real Barcode Videos

We next apply our online temporal filtering approach to the real
barcode video recognition task. We collect 10 barcode videos
by taking pictures of real product labels using a smartphone
camera. The video frames are of relatively low quality with
considerable illumination variations and pose changes, most of
which are defocused and blurred. Some of the sample frames
are shown in Figure 6. The videos are around 20 frames in
length on average.

After running the visual barcode tracker using a conventional

www.ijfis.org Robust Video-Based Barcode Recognition via Online Sequential Filtering | 12
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Figure 5. (Top) Unblurred clean barcode image with the sequence of noisy video frames generated from it using Gaussian blur with different
scales. (Bottom) Each of three panels depicts the sequences of normalized signal vectors, online class filtering, and state filtering results for
three digits (the first, the third in the left part, and the sixth in the right) whose true digit classes are shown in the parentheses.

Figure 6. Sample frames from barcode videos.

detector, we obtain the cropped barcode areas. We simply
split the area into 12 signals for digits according to the relative
boundary/digit width proportions. Then the proposed online
filtering is applied to each digit signal sequence individually.
For a performance comparison, we also test with a baseline
method, a fairly standard frame-by-frame based barcode rec-

ognizer, where the overall decoding for a whole video can be
done by majority voting.

In Table 1 we summarize the recognition accuracies of the
proposed approach and the baseline method over all videos. As
there are 12 digits for each video, we report the proportions
of the accurately predicted digits out of 12. The proposed ap-
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Table 1. Barcode recognition accuracy on real videos

Video# Frame-by-frame (%) Proposed method (%)

1 25.00 75.00

2 33.33 75.00

3 0.00 58.33

4 25.00 100.00

5 91.67 100.00

6 33.33 58.33

7 25.00 83.33

8 41.67 66.67

9 58.33 75.00

10 33.33 91.67

Average 36.67 78.33

proach significantly improves the baseline method with nearly
80% accuracy on average, which signifies the impact of the
principled information accumulation via sequential filtering.
On the other hand, the heuristic majority voting scheme fails
to decode the correct digits most of the time, mainly due to
its independent treatment of the video frames with potentially
different noise/blur levels.

5.2.1 More Severe Pose/Illumination Changes

We next test the proposed barcode tracking/recognition ap-
proaches on the video frames with more severe illumination
and pose variations. We have collected additional seven videos
(some sample video frames illustrated in Figure 7), where there
are significant shadows, local light reflections, in conjunction
with deformed objects (barcode on plastic or aluminum foil bag
containers) and out-of-plane rotations.1

The recognition results are summarized in Table 2. The
results indicate that the proposed sequential filtering approach
is viable even for the severe appearance conditions. In particular,
the partial lighting variations (e.g., shadows) can be effectively
handled by the intensity normalization in the measurement
processing, while the pose changes (to some degree) can also
be effectively handled by the noisy emission modeling in HMM.

1It is worth noting that the in-plane rotations were already dealt with in
the previous experiments. However, the out-of-plane rotations, if significant
changes, may not be properly handled by the proposed approach since we use a
simple equal division to extract each digit code. So, we collect the videos with
mild changes in out-of-plane pose changes.

Table 2. Barcode recognition accuracy on real videos with severe
illumination and pose variations.

Video# Frame-by-frame (%) Proposed method (%)

11 33.33 83.33

12 41.67 66.67

13 8.33 50.00

14 16.67 91.67

15 25.00 66.67

16 33.33 58.33

17 33.33 75.00

Average 27.38 70.24

6. Conclusion

In this paper we proposed a novel video-based barcode recogni-
tion algorithm. Unlike single-frame recognizers the proposed
method eliminates the extra human effort needed to acquire
clean, blur-free image frames by directly dealing with a se-
quence of noisy blurred barcode image frames as an online fil-
tering problem. Compared to a frame-by-frame based approach
with heuristic majority voting scheme, the belief propagation
of the class label and frame-wise noise levels in our model can
exploit all cues from noisy frames. The proposed approach
was empirically shown to be effective for accurate prediction
of barcode labels, achieving significant improvement over con-
ventional single-frame based approaches. Although in practice,
the current algorithm needs frames of higher quality to achieve
100% accuracy, the results show that the proposed approach
can significantly improve the recognition accuracy for blurred
and unfocused video data.
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Figure 7. Sample frames from additional barcode videos with severe illumination and pose changes.
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