With 3-D vision measuring, camera calibration is necessary to calculate parameters accurately. Camera calibration was developed widely in two categories. The first establishes reference points in space, and the second uses a grid type frame and statistical method. But, the former has difficulty to setup reference points and the latter has low accuracy. In this paper we present an algorithm for camera calibration using perspective ratio of the grid type frame with different line widths. It can easily estimate camera calibration parameters such as lens distortion, focal length, scale factor, pose, orientations, and distance. The advantage of this algorithm is that it can estimate the distance of the object. Also, the proposed camera calibration method is possible estimate distance in dynamic environment such as autonomous navigation. To validate proposed method, we set up the experiments with a frame on rotator at a distance of 1, 2, 3, 4[m] from camera and rotate the frame from -60 to 60 degrees. Both computer simulation and real data have been used to test the proposed method and very good results have been obtained. We have investigated the distance error affected by scale factor or different line widths and experimentally found an average scale factor that includes the least distance error with each image. The average scale factor tends to fluctuate with small variation and makes distance error decrease. Compared with classical methods that use stereo camera or two or three orthogonal planes, the proposed method is easy to use and flexible. It advances camera calibration one more step from static environments to real world such as autonomous land vehicle use.
With 3-D vision measuring, camera calibration is necessary to calculate parameters accurately. Camera calibration was developed widely in two categories. The first establishes reference points in space, and the second uses a grid type frame and statistical method. But, the former has difficulty to setup reference points and the latter has low accuracy. In this paper we present an algorithm for camera calibration using perspective ratio of the grid type frame with different line widths. It can easily estimate camera calibration parameters such as focal length, scale factor, pose, orientations, and distance. But, radial lens distortion is not modeled. The advantage of this algorithm is that it can estimate the distance of the object. Also, the proposed camera calibration method is possible estimate distance in dynamic environment such as autonomous navigation. To validate proposed method, we set up the experiments with a frame on rotator at a distance of 1,2,3,4[m] from camera and rotate the frame from -60 to 60 degrees. Both computer simulation and real data have been used to test the proposed method and very good results have been obtained. We have investigated the distance error affected by scale factor or different line widths and experimentally found an average scale factor that includes the least distance error with each image. It advances camera calibration one more step from static environments to real world such as autonomous land vehicle use.
Although commercial PIV systems have been widely used for the non-intrusive velocity field measurement of fluid flows, they are still under development and have considerable room for improvement. In this study, a single-frame double-exposure PIV system using a high-resolution CCD camera was developed. A pulsed Nd:Yag laser and high-resolution CCD camera were synchronized by a home-made control circuit. In order to resolve the directional ambiguity problem encountered in the single-frame PIV technique, the second particle image was genuinely shifted in the CCD sensor array during the time interval dt. The velocity vector field was determined by calculating the displacement vector at each interrogation window using cross-correlation with 50% overlapping. In order to check the effect of spatial resolution of CCD camera on the accuracy of PIV velocity field measurement, the developed PIV system with three different resolution modes of the CCD camera (512 ${\times}$ 512, lK ${\times}$ IK, 2K ${\times}$ 2K) was applied to a turbulent flow which simulate the Zn plating process of a steel strip. The experimental model consists of a snout and a moving belt. Aluminum flakes about $1{\mu}m$ diameter were used as scattering particles for the liquid flow in the zinc pot and the gas flow above the zinc surface was seeded with atomized olive oil with an average diameter of 1-$3{\mu}m$. Velocity field measurements were carried out at the strip speed $V_s$=1.0 m/s. The 2K ${\times}$ 2K high-resolution PIV technique was significantly superior compared to the smaller pixel resolution PIV system. For the cases of 512 ${\times}$ 512 and 1K ${\times}$ 1K pixel resolution PIV system, it was difficult to get accurate flow structure of viscous flow near the wall and small vortex structure in the region of large velocity gradient.
In this paper, we propose a method combining an accelerometer with a cross structured light system to estimate the golf green slope. The cross-line laser provides two laser planes whose functions are computed with respect to the camera coordinate frame using a least square optimization. By capturing the projections of the cross-line laser on the golf slope in a static pose using a camera, two 3D curves’ functions are approximated as high order polynomials corresponding to the camera coordinate frame. Curves’ functions are then expressed in the world coordinate frame utilizing a rotation matrix that is estimated based on the accelerometer’s output. The curves provide some important information of the green such as the height and the slope’s angle. The curves estimation accuracy is verified via some experiments which use OptiTrack camera system as a ground-truth reference.
In this paper, we propose a method to track the movement of camera from the video sequences. This method is useful for video analysis and can be applied as pre-processing step in some application such as video stabilizer and marker-less augmented reality. First, we extract the features in each frame using corner point detection. The features in current frame are then compared with the features in the adjacent frames to calculate the optical flow which represents the relative movement of the camera. The optical flow is then analyzed to obtain camera movement parameter. The final step is camera movement estimation and correction to increase the accuracy. The method performance is verified by generating a 3D map of camera movement and embedding 3D object to the video. The demonstrated examples in this paper show that this method has a high accuracy and rarely produce any jitter.
Structured light vision system has been widely used in 3D surface profiling. Usually, it is composed of a camera and a laser which projects a line on the target. Calibration is necessary to acquire 3D information using structured light stripe vision system. Conventional calibration algorithms have found the pose of the camera and the equation of the stripe plane of the laser under the same coordinate system of the camera. Therefore, the 3D reconstruction is only possible under the camera frame. In most cases, this is sufficient to fulfill given tasks. However, they require multiple images which are acquired under different poses for calibration. In this paper, we propose a calibration algorithm that could work by using just one shot. Also, proposed algorithm could give 3D reconstruction under both the camera and laser frame. This would be done by using newly designed calibration structure which has multiple vertical planes on the ground plane. The ability to have 3D reconstruction under both the camera and laser frame would give more flexibility for its applications. Also, proposed algorithm gives an improvement in the accuracy of 3D reconstruction.
In this paper, we propose a new algorithm to detect human faces for controling a camera used in video conference. We model the distribution of skin color and set up the standard skin color in YIQ color space. An input video frame image is segmented into skin and non-skin segments by comparing the standard skin color and each pixels in the input video frame. Then, shape filler is applied to select face segments from skin segments. Our algorithm detects human faces in real time to control a camera to capture a human face with a proper size and position.
In this paper, we propose a dynamic-based compression system by creating mosaic background and transmitting the change information. A dynamic mosaic of the background is progressively integrated in a single image using the camera motion information. For the camera motion estimation, we calculate affine motion parameters for each frame sequentially with respect to its previous frame. The camera motion is robustly estimated on the background by discriminating between background and foreground regions. The modified block-based motion estimation is used to separate the back-ground region.
이동물체 추적은 카메라와 물체사이의 이동관계에 따라 카메라는 고정되어 있고 물체가 이동하는 경우, 물체는 고정되어 있고 카메라가 움직이는 경우와 물체가 이동하고 카메라도 움직이는 경우로 분류된다. 이동 물체를 추적하는 기존의 방법으로는 차영상 기반의 방법과 광류(Optical Flow)를 이용한 방법이 있다. 광류를 이용한 방법은 카메라와 물체 중에서 하나가 고정되어 있는 경우에 주로 쓰인다. 이 방법은 이전 프레임에서 구한 물체가 다음 프레임의 한 위치에 있을 때 시공간 벡터를 이용하여 물체의 이동을 인식하고 추적한다. 그러나 이 방법은 계산 량이 많아 처리속도가 느리기 때문에, DVR(Digital Video Recorder)과 같이 실시간 처리가 필요한 보안 시스템에서는 사용할 수 없다. 차영상을 이용한 방법은 카메라는 고정되어 있고 물체가 이동하는 경우에 적용 가능하며 배경영상과 차영상을 이용하여 물체를 추적한다. 이 방법은 계산 량이 적어 처리속도가 빠르기 때문에, 실시간 처리가 필요한 보안 시스템에 적합하다. 하지만, 카메라가 움직일 경우에는 배경영상을 구하기가 어려우므로 물체 검출을 할 수 없는 단점이 있다. 본 논문에서 설계, 구현한 PTZ(Pan-Tilt-zoom) 제어에 의한 차영상 기반의 이동물체 추적 시스템은 카메라와 물체가 모두 이동하는 상황에서 사용할 수 있다. 이 이동물체 추적 시스템은 차영상 기반방식의 장점을 이용, 실시간 처리가 가능하기 때문에 DVR과 같은 실시간 처리가 필요한 보안 시스템 구축을 용이하게 해 줄 것이다.
In this paper, we present a real-time method to detect moving objects in a rotating and zooming camera. It is useful for camera surveillance of fixed but rotating camera, camera on moving car, and so on. We first compensate the global motion, and then exploit the displaced frame difference (DFD) to find the block-wise boundary. For robust detection, we propose a kind of image to combine the detections from consecutive frames. We use the block-wise detection to achieve the real-time speed, except the pixel-wise DFD. In addition, a fast block-matching algorithm is proposed to obtain local motions and then global affine motion. In the experimental results, we demonstrate that our proposed algorithm can handle the real-time detection of common object, small object, multiple objects, the objects in low-contrast environment, and the object in zooming camera.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.