• 제목/요약/키워드: Frame Stress

검색결과 652건 처리시간 0.026초

연속적 데이터 획득을 위한 착용형 무선 지면 반력 측정 시스템 (Wireless Wearable GRF Sensing System for Continuous Measurements)

  • 이동관;정용록;구광민;김정
    • 한국정밀공학회지
    • /
    • 제32권3호
    • /
    • pp.285-292
    • /
    • 2015
  • This paper presents a wireless ground reaction force (GRF) sensing system for ambulatory GRF recording. The system is largely divided into three parts: force sensing modules based on optical sensor, outsole type frame, and embedded system for wireless communication. The force sensing module has advantages of the low height, robustness to the moment interference, and stable response in long term use. In simulation study, the strain and stress properties were examined to satisfy the requirements of the GRF sensing system. Four sensing modules were mounted on the toe, ball, and heel of foot shaped frame, respectively. The GRF signals were extracted using Micrpcontroller unit and transferred to the smart phone via Bluetooth communication. We measured the GRF during the normal walking for the validation of the continuous recording capability. The recorded GRF was comparable to the off the shelf stationary force plate.

Load Transfer Mechanism of a Hybrid Beam-Column Connection System with Structural Tees

  • Kim, Sang-Sik;Choi, Kwang-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.199-205
    • /
    • 2006
  • The composite frame system with reinforced concrete column and steel beam can be improved in its structural efficiency by complementing the shortcomings of the two systems. The system, however, has many inherent problems in practical design and construction process due to the dissimilarities of the materials. Considering these circumstance, this research aims for the development of a composite structural system which connects the steel beams to the R/C columns with higher structural safety and economy. Basically, the proposed connection system is composed of four split tees, structural angles reinforced by a stiffener, high strength steel rods, connecting plates and shear plates. Structural tests have been carried out to investigate the moment transfer mechanism 1Tom the beam flange to steel rods or connecting plates through the structural angle reinforced by a stiffener. The four prototype specimens have been tested until the flange of the beam reached a plastic state. The test results indicated that no distinct material dissimilarities between concrete and steel have been detected for the proposed hybrid beam-column connection system and that the stress transfer through the structural angle between the beam flange and steel rods or connecting plates was very encouraging.

로터 시스템 회전운동의 정식화 및 해석 (Inelastic Transient Dynamic Analysis of Two- and Three-dimensional Stress Problems by Particular Integral Boundary Element Method)

  • 윤성호;임리민
    • 한국전산구조공학회논문집
    • /
    • 제21권5호
    • /
    • pp.475-482
    • /
    • 2008
  • 본 논문은 로터 시스템의 디스크 회전운동을 표현하는데 있어 운동방정식을 통합하는 과정에서 기존 연구자들이 채택한 오일러 각 사용법이 일관성이 없음을 지적하였다. 기존 연구자들은 오일러 각 순서가 달라서 속도와 운동에너지도 달리 산정하였음은 물론, 운동방정식은 오직 선형 시스템만 취급해 왔다 이러한 오일러 각 사용법의 단점을 극복하기 위하여 회전운동을 더욱 단순하게 매개화할 수 있는 4원법(quaternion)과 구 좌표계를 적용하여 비선형 시스템을 도출하였다. 이를 바탕으로 수치해석을 통하여 기존 방법과 비교하여 제안한 방법의 신뢰성과 우수성을 보였다.

평면 뼈대구조물의 큰 변형에 대한 비선형 유한요소의 정식화 (A Finite Element Nonlinear Formulation for Large Deformations of Plane Frames)

  • 윤영묵;박문호
    • 전산구조공학
    • /
    • 제7권4호
    • /
    • pp.69-83
    • /
    • 1994
  • 평면 뼈대구조물의 매우 큰 변형에 대하여 정확한 비선형 유한요소의 정식화 과정을 나타내었다. 유한요소의 구성은 변화되는 재료의 기준 물성치에 근거를 두고 형성하였으며 매우 큰 변형을 받는 재료의 성질을 명확하게 특정지어 진응력-변형율 관계식을 직접 적용할 수 있도록 하였다. 큰회전과 작은 변형율을 받는 문제들을 형성하기 위하여 Co-rotation 접근 방법을 사용하였다. 큰 변형을 일으키는 요소의 문제를 해결하기 위하여 직선보 형태의 유한요소를 사용하였으며 개개의 유한요소의 정식화는 축방향력의 영향을 고려하여 미소 처짐보이론을 바탕으로 형성하였다. 본 연구에서 형성된 큰 변형에 대한 비선형 유한요소의 타당성을 확인하기 위해 몇몇 수치해들을 해석하고 검토하였다.

  • PDF

Strength Demand of Hysteretic Energy Dissipating Devices Alternative to Coupling Beams in High-Rise Buildings

  • Choi, Kyung-Suk;Kim, Hyung-Joon
    • 국제초고층학회논문집
    • /
    • 제3권2호
    • /
    • pp.107-120
    • /
    • 2014
  • A Reinforced concrete (RC) shear wall system with coupling beams has been known as one of the most promising structural systems for high-rise buildings. However, significantly large flexural and/or shear stress demands induced in the coupling beams require special reinforcement details to avoid their undesirable brittle failure. In order to solve this problem, one of promising candidates is frictional hysteretic energy dissipating devices (HEDDs) as an alternative to the coupling beams. The introduction of frictional HEDDs into a RC shear wall system increases energy dissipation capacity and maintains the frame action after their yielding. This paper investigates the strength demands (specifically yield strength levels) with a maximum allowable ductility of frictional HEDDs based on comparative non-linear time-history analyses of a prototype RC shear wall system with traditional RC coupling beams and frictional HEDDs. Analysis results show that the RC shear wall systems coupled by frictional HEDDs with more than 50% yield strength of the RC coupling beams present better seismic performance compared to the RC shear wall systems with traditional RC coupling beams. This is due to the increased seismic energy dissipation capacity of the frictional HEDD. Also, it is found from the analysis results that the maximum allowable ductility demand of a frictional HEDD should increase as its yield strength decreases.

건축물 시공 자동화 시스템을 위한 자립형 철골 접합부의 시공성 분석 (Constructibility Analysis of Self-supported Steel Joint for Automated Construction System)

  • 김동건;양성우;김태훈;신윤석;조훈희;강경인
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 춘계 학술논문 발표대회 학계
    • /
    • pp.1-4
    • /
    • 2009
  • Construction automation and robotics are being introduced as an efficient alternative to overcome troubles caused by lack of skilled labors. To accomplish effective automated construction system, design for automation(DFA) should be performed in parallel with the development of core technologies such as control and sensing of robots. In Korea, the development of robotic crane-based construction automation(RCA) system is progressing, and the research group has recently developed newly designed steel joint to improve the efficiency of the system. However, performance of the new system should be examined prior to its application on construction sites. Therefore, This study analyzed performance of the new steel frame focused on its constructibility by carrying out mock-up test. As a result, the steel frame satisfied the standards of allowable stress and deflection. It also enables to reduce the time for installation.

  • PDF

확률 기반 설계법을 위한 코드 변환과 시스템 신뢰도에 대한 고찰 (The study on the system reliability and code conversion for the probability based design)

  • 김광철
    • 한국가구학회지
    • /
    • 제20권5호
    • /
    • pp.440-456
    • /
    • 2009
  • Because PBD was started as a design tool for steel construction and concrete construction, it was able to applied to the post and beam method of wooden building constructions. But, it may not suitable to light frame wooden construction that is becoming popular in domestic construction market due to the economical efficiency and the constructive simplification. Owing to the share effects between member and sheathing material or among structural members, light frame wooden construction is different from post and beam construction that use a single structural member. Therefore, consideration on the system analysis and system design are urgently needed to use in actual life and inspect the reliability of structures from the system view. With this in mind, code conversion from ASD to PBD that is pressing issue in domestic wooden building construction was studied, also various countries status about PBD were considered and then approaching methods on the system reliability were referred. Finally, several considerations for the development of PBD were explored. PBD should be considered as, not only a new structural design process that select sizes of structural member, but a industrial tool that can lead a development of more reliable wood products. A strongest point of PBD is independent of various construction materials and construction types.

  • PDF

Numerical simulation of soil-structure interaction in framed and shear-wall structures

  • Dalili, M.;Alkarni, A.;Noorzaei, J.;Paknahad, M.;Jaafar, M.S.;Huat, B.B.K.
    • Interaction and multiscale mechanics
    • /
    • 제4권1호
    • /
    • pp.17-34
    • /
    • 2011
  • This paper deals with the modeling of the plane frame structure-foundation-soil system. The superstructure along with the foundation beam is idealized as beam bending elements. The soil medium near the foundation beam with stress concentrated is idealized by isoparametric finite elements, and infinite elements are used to represent the far field of the soil media. This paper presents the modeling of shear wall structure-foundation and soil system using the optimal membrane triangular, super and conventional finite elements. Particularly, an alternative formulation is presented for the optimal triangular elements aimed at reducing the programming effort and computational cost. The proposed model is applied to a plane frame-combined footing-soil system. It is shown that the total settlement obtained from the non-linear interactive analysis is about 1.3 to 1.4 times that of the non-interactive analysis. Furthermore, the proposed model was found to be efficient in simulating the shear wall-foundation-soil system, being able to yield results that are similar to those obtained by the conventional finite element method.

Discrete sizing and layout optimization of steel truss-framed structures with Simulated Annealing Algorithm

  • Bresolin, Jessica M.;Pravia, Zacarias M.C.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.603-617
    • /
    • 2022
  • Structural design, in general, is developed through trial and error technique which is guided by standards criteria and based on the intuition and experience of the engineer, a context that leads to structural over-dimensioning, with uneconomic solutions. Aiming to find the optimal design, structural optimization methods have been developed to find a balance between cost, structural safety, and material performance. These methods have become a great opportunity in the steel structural engineering domain since they have as their main purpose is weight minimization, a factor directly correlated to the real cost of the structure. Assuming an objective function of minimum weight with stress and displacement constraints provided by Brazilian standards, the present research proposes the sizing optimization and combined approach of sizing and shape optimization, through a software developed to implement the Simulated Annealing metaheuristic algorithm. Therefore, two steel plane frame layouts, each admitting four typical truss geometries, were proposed in order to expose the difference between the optimal solutions. The assessment of the optimal solutions indicates a notable weight reduction, especially in sizing and shape optimization combination, in which the quantity of design variables is increased along with the search space, improving the efficiency of the optimal solutions achieved.

가새 골조에서 거싯 플레이트 연결부의 강성 평가 (Evaluation of Gusset Plate Connection Stiffness in Braced Frames)

  • 유정한
    • 한국강구조학회 논문집
    • /
    • 제21권2호
    • /
    • pp.105-113
    • /
    • 2009
  • 가새골조 성능을 개선하기 위해 연결부 (거싯 플레이트) 강도, 강성, 연성이 골조 디자인에 직접적으로 고려되어야 한다. 연결부의 강도는 지진력에 저항하도록 디자인 되어야하고 필요한 골조시스템의 연성을 확보하는데 기여해야한다. 그리고 연결부의 강성은 구조요소와 연결부의 동적 반응과 변위 요구에 영향을 준다. 이 논문에서 지난 실험 결과를 이용하여 거싯 플레이트 연결부에 대한 현 디자인 모델을 검토하고 평가한다. 현 디자인 모델은 연결부 디자인 가이드라인을 주기엔 적절하지 못하고 실제 거싯 플레이트의 응력과 변위 상태는 비선형이고 굉장히 복잡하다. 구조 디자이너들은 시스템과 연결부의 성능을 대략적으로 예측하기 위해 보와 기둥을 포함한 단순한 모델을 원한다. 이를 위해 단순화한 디자인 모델이 개발되고 평가된다. 이 모델은 비교적 정확하고 신뢰성 있는 연결부 강성 평가를 제공한다.