• Title/Summary/Keyword: Frame Stress

Search Result 652, Processing Time 0.032 seconds

Nonlinear Structural Safety Assessment under Dynamic Excitation Using SFEM (추계론적 유한 요소법을 이용한 동하중을 받는 비선형 구조물의 안전성 평가)

  • Huh, Jungwon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.373-384
    • /
    • 2000
  • To assess the safety of nonlinear steel frame structures subjected to short duration dynamic loadings, especially seismic loading, a nonlinear time domain reliability analysis procedure is proposed in the context of the stochastic finite element concept. In the proposed algorithm, the finite element formulation is combined with concepts of the response surface method, the first order reliability method, and the iterative linear interpolation scheme. This leads to the stochastic finite element concept. Actual earthquake loading time-histories are used to excite structures, enabling a realistic representation of the loading conditions. The assumed stress-based finite element formulation is used to increase its efficiency. The algorithm also has the potential to evaluate the risk associated with any linear or nonlinear structure that can be represented by a finite element algorithm subjected to seismic loading or any short duration dynamic loading. The algorithm is explained with help of an example and verified using the Monte Carlo simulation technique.

  • PDF

The Molecular Profiling of a Teleostan Counterpart of Follistatin, Identified from Rock Bream Oplegnathus fasciatus which Reveals its Transcriptional Responses against Pathogenic Stress

  • Herath, H.M.L.P.B;Priyathilaka, Thanthrige Thiunuwan;Elvitigala, Don Anushka Sandaruwan;Umasuthan, Navaneethaiyer;Lee, Jehee
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.3
    • /
    • pp.273-281
    • /
    • 2015
  • The follistatin (FST) gene encodes a monomeric glycoprotein that plays a role in binding and inhibiting the functions of members of the transforming growth factor (TGF)-${\beta}$ superfamily. Thus, FST facilitates a wide variety of functions, ranging from muscle growth, to inflammation and immunity. In this study, we sought to characterize an FST counterpart, RbFST, which was identified from rock bream Oplegnathus fasciatus. The RbFST cDNA sequence (2,419 bp) contains a 933-bp open reading frame (ORF) that encodes a putative amino acid sequence for RbFST (35 kDa). The putative amino acid sequence contains a Kazal-type serine protease inhibitor domain (51-98 residues) and an EF-hand, calcium-binding domain (191-226 residues). Additionally, this sequence shares a high identity (98.7%) with the Siniperca chuatsi FST sequence, with which it also has the closest evolutionary relationship according to a phylogenetic study. Omnipresent distribution of RbFST transcripts were detected in the gill, liver, spleen, head kidney, kidney, skin, muscle, heart, brain, and intestine of healthy animals, with significantly higher expression levels in the heart, followed by the liver tissue. Under pathogenic stress caused by two bacterial pathogens, Streptococcus iniae and Edwardsiella tarda, RbFST transcription was found to be significantly up-regulated. Altogether, our findings suggest the putative role of RbFST in immune related responses against pathogenic infections, further prefiguring its significance in rock bream physiology.

Expression of a Cu-Zn Superoxide Dismutase Gene in Response to Stresses and Phytohormones in Rehmannia Glutinosa

  • Park, Myoung-Ryoul;Ryu, Sang-Soo;Yoo, Nam-Hee;Yu, Chang-Yeon;Yun, Song-Joong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.270-275
    • /
    • 2005
  • Superoxide dismutases (SOD) are metalloenzymes that convert $O_2^-\;to\;H_2O_2$. Rehmannia glutinosa is highly tolerant to paraquat-induced oxidative stress. The primary objective of this study was to characterize regulation of SOD gene expression in R. glutinosa in response to oxidative stresses and hormones. A full-length putative SOD clone (RgCu-ZnSOD1) was isolated from the leaf cDNA library of R. glutinosa using an expressed sequence tag clone as a probe. RgCu-ZnSOD1 cDNA is 777 bp in length and contains an open reading frame for a polypeptide consisted of 152 amino acid residues. The deduced amino acid sequence of the clone shows highest sequence similarity to the cytosolic Cu-ZnSODs. The two to three major bands with several minor ones on the Southern blots indicate that RgCu-ZnSOD1 is a member of a small multi-gene family. RgCuZnSOD1 mRNA was constitutively expressed in the leaf, flower and root. The expression of RgCu-ZnSOD1 mRNA was increased about 20% by wounding and paraquat, but decreased over 50% by ethylene and $GA_3$. This result indicates that the RgCu-ZnSOD1 expression is regulated differentially by different stresses and phytohormones at the transcription level. The RgCu-ZnSOD1 sequence and information on its regulation will be useful in investigating the role of SOD in the paraquat tolerance of R. glutinosa.

Validation of Inside Design Safety for the 119 Ambulance using a Structural Analysis (119 구급자동차의 구조해석을 통한 내부 설계 안전성 검증에 관한 연구)

  • Shin, Dong-Min;Kim, Hyung-Wook;Han, Yong-Taek
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.123-132
    • /
    • 2016
  • This study is the result of performing structural analysis in accordance with the new ambulance design of inside space using the new vehicle's bodywork. 3D design works were performed based on international standards and designed ambulance. And then it was tested by a shock of 10G to the ambulance car inside with respect to the vehicle body after that we looked into the consequences. At this time, it was carried out in consideration of its own weight and the weight of components according to the EN regulation. From the result of structural analysis, the internal frame and configured handrail in a variety of pipe did not have a relatively large stress load, but internal panel and cabinets has been interpreted to receive a large stress load at least over 50 MPa. When carried out reinforcement design in accordance with this analysis, the modification of thickness and shape could be necessary. On the basis of these findings, it is also expected that there could be a useful information to produce a more secure vehicle for paramedics and patients using a ambulance inside the vehicle.

Isolation and Characterization of Calmodulin Gene from Panax ginseng C. A. Meyer

  • Wasnik, Neha G.;Kim, Yu-Jin;Kim, Se-Hwa;Sathymoorthy, S.;Pulla, Rama Krishna;Parvin, Shohana;Senthil, Kalaiselvi;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.33 no.1
    • /
    • pp.59-64
    • /
    • 2009
  • $Ca^{2+}$ and calmodulin (CaM), a key $Ca^{2+}$ sensor in all eukaryotes, have been implicated for defense responses of plants. Eukaryotic CaM contains four structurally and functionally similar $Ca^{2+}$ domains named I, II, III and IV. Each $Ca^{2+}$ binding loop consists of 12 amino acid residues with ligands arranged spatially to satisfy the octahedral symmetry of $Ca^{2+}$ binding. To investigate the altered gene expression and the role of CaM in ginseng plant defense system, cDNA clone containing a CaM gene, designated PgCaM was isolated and sequenced from Panax ginseng. PgCaM, which has open reading frame of 450 nucleotides predicted to encode a precursor protein of 150 amino acid residues. Its sequence shows high homologies with a number of other CaMs, with more similarity to CaM of Daucus carota (AAQ63461). The expression of PgCaM in different P. ginseng organs was analyzed using real time PCR. The results showed that PgCaM expressed at different levels in young leaves, shoots, and roots of 3-week-old P. ginseng. In addition, the expressions of PgCaM under different abiotic stresses were analyzed at different time intervals.

Degree of Restraint(DOR) of Longitudinal Steel at Continuously Reinforced Concrete Pavement(CRCP) Against Environmental Loadings (환경하중에 의한 연속철근콘크리트(CRCP) 종방향 철근의 구속정도)

  • Nam, Jeong-Hee;Ahn, Sang Hyeok
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.95-104
    • /
    • 2014
  • PURPOSES : The purpose of this study is to evaluate the degree of restraint (DOR) of longitudinal steel at continuously reinforced concrete pavement (CRCP) against environmental loadings. METHODS : To measure the longitudinal steel strain, 3-electrical resistance and self-temperature compensation gauges were installed to CRCP test section (thickness = 250mm, steel ratio = 0.7%) and continuously measured 10 min. intervals during 259 days. In order to properly analyze the steel strains first, temperature compensation process has been conducted. Secondly, measured steel strains were divided into 12 phases with different events such as before paving, during concrete hardening, and after first cracking, etc. RESULTS : Thermal strain rate (TSR) concept is defined as the linear strain variations with temperature changes and restraints rate of longitudinal steel against environmental loadings (especially thermal loading) with different cases is defined as degree of restraint(DOR). New concept of DOR could be indirect indicator of crack width behaviors of CRCP. CONCLUSIONS : Before paving, DOR of longitudinal steel is almost same at the coefficient of thermal expansion of steel ($12.44m/m/^{\circ}C$) because of no restraint boundary condition. After concrete pouring, DOR is gradually changed into -1 due to concrete stiffness developing with hydration. After first cracking at crack induced area, values of DOR are around -3~-5. The negative DOR stands for the crack width behavior instead of steel strain behavior. During winter season, DOR reached to -5.77 as the highest, but spring this values gradually reduced as -1.7 as the lowest. Based on this observation, we can presume crack width decreased over time within the time frame of this study. This finding is not consistent with the current theory on crack width variations over time, so further study is necessary to identify the causes of crack width reducing. One of the reasons could be related to concrete stress re-distribution and stress relaxation.

Evaluation of Fatigue Behavior for Laser Welded High Strength Steel Sheets (SPFC590) (고장력 강판(SPFC590)의 레이저 용접부 피로거동 평가)

  • Heo, Cheol;Kwon, Jong-Wan;Cho, Hyun-Deog;Choi, Sung-Jong;Chung, Woo-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.53-64
    • /
    • 2012
  • Deep and narrow welds can be produced by laser welding at high welding speeds with a narrow heat-affected zone (HAZ) and little distortion of the workpiece. This study aims to evaluate the usefulness of laser welding at automobile component manufacture. Microstructure observation, hardness test, tensile test and fatigue life test are performed by using the fiber laser welded SPFC590 steel sheets which is used widely in the manufacture of automotive seat frame. Three kinds of specimens are only a SPFC590 steel plate, quasi-butt joint plate and lap joint plate by laser welding. The following results that will be helpful to understand the static strength, fatigue crack initiation and growth mechanism were obtained. (1) The tensile strength of quasi butt joint specimens nearly equal to base metal specimens, but lap joint specimens fractured in shear area of weld metal. (2) The fatigue strength of quasi-butt joint specimen was approximately 8 percent lower than that of the base metal specimens. Furthermore, the lap joint specimens were less than 86 percent of the base metal specimens. (3) The lap joint fatigue specimens fractured at shear area in high level stress amplitude, while fractured at normal area in low level stress amplitude. From these results, the applicability of the laser welding to the automobile component is discussed.

Isolation and characterization of Brcpi1 gene encoding phytocystatin from chinese cabbage (Brassica rapa L.) seedlings (배추 유래 phytocystatin 유전자, Brcpi1의 분리 및 발현특성 분석)

  • Jung, Yu-Jin;Cho, Yong-Gu;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.407-414
    • /
    • 2009
  • A cDNA clone encoding phytocystatin was isolated from Brassica rapa seedlings, through rapid amplification of cDNA ends (RACE). This gene (name as Brcpi1; GenBank accession no.: EF079953) had a total length of 881 bp with an open reading frame of 609 bp, and encoded predicted polypeptide of 203 amino acid (aa) residues including a putative N-terminal signal peptide. Other relevant regions found its sequence included the G and PW conserved aa motifs, and the consensus LARFAV sequence for phytocystatins and the reactive site QVVAG. The BrCPI1 protein shared 95, 94, 81, 80 and 78% identity with other CPI proterins isolated from Brassica oleracea (BoCPI-1), Arabidopsis thaliana (AtCY SB), Glycine max (GmCPI), Oryza sativa (OsCYS-2) and Zea may (ZmCPI) at amino acid level, respectively. Southern blot analysis showed that Brcpi1 was a low copy gene. Expression pattern analysis revealed that Brcpi1 was a tissue-specific expressing gene during reproductive growth and strongly expressed at mature seedling stages. Furthermore, overexpression of Brcpi1 in transgenic Arabidopsis was enhanced tolerance to salt and cold stresses. Meanwhile the juvenile seedling of Brcpi1 transgenic plants was not affected by various concentrations ABA in MS medium. Taken together, the results showed that Brcpi1 functioned as a cysteine protease inhibitor and it exhibited a protective agent against diverse types of abiotic stress, which induced this gene in a tissue- and stress-specific manner.

A Study on the Characteristics of Welding Residual Stresses and Groove Sja[e pf Cprmer Joint in Box Column with Ultra Thick Plate (극후판 Box Column 코너이음부의 용접잔류응력 및 Groove형상 특성에 관한 연구)

  • 방한서;안규백;김종명;석한길;장웅성
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.97-103
    • /
    • 1999
  • Ships, structures on the ocean, bridges, and other structures tend to be large by the development of industry. These ultra thick plate were welded with large heat input, which causes welding stresses, deformation and buckling, so it has to be considered the weld design, safety, reliability. The welded residual stresses were produced and redistributed due to the effect of large heat input. The mechanical phenomenon has not been surely identified yet. In spite of the lack of the study on the box column, there are various types of steel frame such as I type, H type, + type and $\bigcirc$ type, used in high story building. In this study, we performed computer simulation with two dimensional heat conduction and plane deformation thermal elasto-plastic finite element computer program as changing the plate thickness to 100mm, 150mm and groove angle to $60^{\circ}C$, $45^{\circ}C$, $30^{\circ}C$ of corner joint in box column. And then, to identify mechanical phenomenon such as the phenomenon of thermal distribution, welding residual stresses and deformation and to decide optimum groove angle and welding condition. The main conclusion can be summarized as follows: 1) Since the groove angle has became cooling down rapidly due to its smaller value, the temperature slope was steeped somewhat. 2) The tensile stress within the welding direction stresses was somewhat decreased at the weld metal and HAZ, increasing of the groove angle. 3) The local stress concentration of the groove angle $60^{\circ}C$ was appeared smaller than groove angle $30^{\circ}$.

  • PDF

Characterization of Mitochondrial Heat Shock Protein 75 (mtHSP75) of the Big-belly Seahorse Hippocampus abdominalis (빅벨리해마(Hippocampus abdominalis)에서의 Mitochondrial Heat Shock Protein 75 유전자의 특징과 발현 분석)

  • Ko, Jiyeon;Qiang, Wan;Lee, Sukkyoung;Bathige, S.D.N.K.;Oh, Minyoung;Lee, Jehee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.3
    • /
    • pp.354-361
    • /
    • 2015
  • Mitochondrial heat shock protein 75 (mtHSP75) is a member of the HSP90 family and plays essential roles in refolding proteins of the mitochondrial matrix. Mitochondria provide energy in the form of ATP and generate reactive oxygen species (ROS). Heat shock proteins (HSPs) are activated in response to stress, and protect cells. In this study, we characterized the mtHSP75 of the big-belly seahorse Hippocampus abdominalis. The protein (BsmtHSP75) is encoded by an open reading frame (ORF) of 2,157 nucleotides, has 719 amino acids (aa), and is of molecular mass 82 kDa. BsmtHSP75 has two functional domains, a histidine kinase-like ATPase (HATPase_c) domain (123-276 aa) and an HSP90 family domain (302-718 aa). BsmtHSP75 was expressed in all tested tissues of healthy seahorses. The ovary contained the highest transcription level, followed (in order) by the blood, brain, and muscle. Pouch tissue showed the lowest expression level. The expression of BsmtHSP75 was significantly (P<0.05) up-regulated on viral or bacterial challenge, suggesting that BsmtHSP75 plays a role in the immune defense against bacterial and viral pathogens.