• 제목/요약/키워드: Frame Feature Insertion

검색결과 3건 처리시간 0.014초

차량용 경량화 침입 탐지 시스템을 위한 데이터 전처리 기법 (Data Preprocessing Method for Lightweight Automotive Intrusion Detection System)

  • 박상민;임형철;이성수
    • 전기전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.531-536
    • /
    • 2023
  • 본 논문에서는 차량 내 네트워크에서 즉각적인 공격 탐지를 위해 프레임 피처 삽입이 적용된 슬라이딩 윈도우 기법을 제안한다. 이 방법은 현재 프레임의 공격 여부에 따라 라벨링을 진행하기 때문에 공격 탐지의 실시간성을 보장할 수 있다. 또한 이 방법이 CNN 연산에서 현재 프레임에 대한 가중치를 주어 성능을 향상시킬 수 있음을 실험을 통해 확인하였다. 제안하는 모델은 경량화된 LeNet-5 구조 기반으로 설계되었으며 DoS 공격 탐지 성능에서 100%를 달성하였다. 또한 기존 연구의 모델들과 복잡성을 비교했을 때 제안하는 모델이 ECU와 같이 리소스가 제한된 장치에 더 적합함을 확인하였다.

가상 객체 합성을 위한 단일 프레임에서의 안정된 카메라 자세 추정 (Reliable Camera Pose Estimation from a Single Frame with Applications for Virtual Object Insertion)

  • 박종승;이범종
    • 정보처리학회논문지B
    • /
    • 제13B권5호
    • /
    • pp.499-506
    • /
    • 2006
  • 본 논문에서는 실시간 증강현실 시스템에서의 가상 객체 삽입을 위한 빠르고 안정된 카메라 자세 추정 방법을 제안한다. 단일 프레임에서 마커의 특징점 추출을 통해 카메라의 회전행렬과 이동벡터를 추정한다. 카메라 자세 추정을 위해 정사영 투영모델에서의 분해기법을 사용한다. 정사영 투영모델에서의 분해기법은 객체의 모든 특징점의 깊이좌표가 동일하다고 가정하기 때문에 깊이좌표의 기준이 되는 참조점의 설정과 점의 분포에 따라 카메라 자세 계산의 정확도가 달라진다. 본 논문에서는 실제 환경에서 일반적으로 잘 동작하고 융통성 있는 참조점 설정 방법과 이상점 제거 방법을 제안한다. 제안된 카메라 자세추정 방법에 기반하여 탐색된 마커 위치에 가상객체를 삽입하기 위한 비디오 증강 시스템을 구현하였다. 실 환경에서의 다양한 비디오에 대한 실험 결과, 제안된 카메라 자세 추정 기법은 기존의 자세추정 기법만큼 빠르고 기존의 방법보다 안정적이고 다양한 증강현실 시스템 응용에 적용될 수 있음을 보여주었다.

통계적 분석 기반 불법 복제 비디오 영상 감식 방법 (A Novel Video Copy Detection Method based on Statistical Analysis)

  • 조혜정;김지은;손채봉;정광수;오승준
    • 방송공학회논문지
    • /
    • 제14권6호
    • /
    • pp.661-675
    • /
    • 2009
  • 인터넷과 멀티미디어 기술이 발달함에 따라 무분별한 불법 콘텐츠들의 유통으로 인한 저작권 침해가 심각한 사회적 문제로 대두되고 있어, 불법 복제 영상을 검출하는 시스템의 개발이 시급하다. 본 논문에서는 공간영역 상에서 다양하게 변형된 복제 영상과 원본 영상간의 통계적 특성을 이용하여 그 유사도를 측정하고 복제 여부를 판단하는 계층적 구조의 불법 비디오 감식 방법을 제안한다. 영상의 대표적 특성인 휘도 성분에 따라 순위를 매김으로써 공간적 변형에 영향을 받지 않도록 하였으며, 데이터베이스에 저장된 방대한 양의 영상들에 대한 검색시간과 계산량을 줄이기 위해 순위 표본 프레임을 이용하여 유사한 후보 영상군을 추출한다. 이러한 후보 영상군을 대상으로 일반적인 불법 복제 비디오의 형태를 감안하여 각 프레임의 가장자리에 위치한 검은색 영역을 제외함과 동시에 영상의 중앙 영역을 포함하여 통계 검정을 이용함으로써 복제 여부를 판단한다. 실험 결과, 제안하는 방법은 이전 방법에 비해 순위 표본 프레임의 정확도가 유사하면서 선택된 순위 표본 프레임 수가 약 61% 가량 적게 추출하여 특징 정보에 저장되는 메모리 양을 절약할 수 있었다. 또한 영상의 화질 열화, 대비 변형, 확대 및 축소, 화면비 변환, 자막 삽입 등 다양한 공간적 변형에도 포괄적으로 복제 여부를 판단할 수 있음을 실험을 통해 확인하였다.