• Title/Summary/Keyword: Fractures

Search Result 2,719, Processing Time 0.028 seconds

Characterization of a groundwater system by subsurface hydrogeological investigation data (지하공동굴착 시 수리지질조사 자료를 이용한 저장공동 심도의 지하수체계 특성 연구)

  • 조성일;김천수;김경수;송무영;전한석
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.93-104
    • /
    • 2004
  • This paper intended to assess the hydro-structure characteristics of volcanic rocks based on the hydrogeological data obtained from the underground storage cavern during construction. The variation of groundwater levels was periodically measured from the 28 surface monitoring holes(NX size) and the hydraulic pressures and injection rates were daily monitored from the water curtain holes(95 horizontal holes and 63 vertical holes). The hydraulic interference tests were performed in whole water curtain holes. The distribution patterns of hydraulic pressure are closely related to the dip angles of fracture intersected to the water curtain holes. Three domains can be grouped by the distribution of hydraulic pressures in the horizontal water curtain holes. The initial hydraulic pressures measured immediately after drilling of water crutain holes are high in ascending order of the cavern C-2, C-1, and C-3. The priliminary hydrochemical data also indicate that the portions of the deep groundwater composition is relatively great in the cavern C-3 area. Some of the horizontal water curtain holes in the cavern C-3 show a steady higher groundwater pressure with the composition of shallow groundwater indicating the outer boundary as constant hydraulic boundary. The water curtain holes in the cavern C-2 is characterized as low initial hydraulic pressure and less injection rates, suggesting poor hydraulic connectivity to a shallow groundwater system. The results of the study can help to understand a hydraulic compartment concept in a fracture hydro-geology and be utilized during the surface investigation for a groundwater system.

A Study of Roughness Measurement of Rock Discontinuities Using a Confocal Laser Scanning Microscope (콘포컬 레이저 현미경을 이용한 불연속면의 거칠기 측정 연구)

  • Byung Gon Chae;Jae Yong Song;Gyo Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.405-419
    • /
    • 2002
  • Fracture roughness of rock specimens is observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wave length of laser is 488 nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The function of laser reflection auto-focusing enables us to measure line data fast and precisely. The system improves resolution in the light axis (namely z) direction because of the confocal optics. Using the CLSM, it is Possible to measure a specimen of the size up to $10{\;}{\times}{\;}10{\;}cm$ which is fixed on a specially designed stage. A sampling is managed in a spacing $2.5{\;}\mu\textrm{m}$ along x and y directions. The highest measurement resolution of z direction is $10{\;}\mu\textrm{m}$, which is more accurate than other methods. Core specimens of coarse and fine grained granite are provided. Fractures are artificially maneuvered by a Brazilian test method. Measurements are performed along three scan lines on each fracture surface. The measured data are represented as 2-D and 3-D digital images showing detailed features of roughness. Line profiles of the coarse granites represent more frequent change of undulation than those of the fine granite. Spectral analyses by the fast Fourier transform (FFT) are performed to characterize the roughness data quantitatively and to identify influential frequency of roughness. The FFT results suggest that a specimen loaded by large and low frequency energy tends to have high values of undulation change and large wave length of fracture roughness.

A Case Study on Stochastic Fracture Network Modeling for Rock Slopes of Busan-Ulsan Highway(Reach 5) (부산-울산 고속국도(5공구)에 위치한 암반사면의 추계론적 절리연결구조 모사에 대한 사례연구)

  • Heo, In-Sill;Um, Jeong-Gi;Kim, Yang-Phil;Kim, Kook-Han;Lee, Young-Kyun
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.337-349
    • /
    • 2006
  • Seven hundred and fifty one fractures of the rhyolitic tuffaceous rock masses were mapped using 6 scanlines placed on rock slope exposures that were within 8.02 km of Busan-Ulsan highway. These data were analyzed to find the number of fracture sets that exist in the rock slopes and the probability distributions of orientation, spacing, trace length and fracture size in 3-D for each of the fracture sets. All the fracture set orientation distributions exhibit high variability. The Fisher distributions were found to be unsuitable to represent the statistical distribution of orientation for most of the fracture sets. The probability distributions, gamma, exponential and lognormal were found to be highly suitable to represent the distribution of spacing and semi-trace length of fracture sets. In obtain-ing these distributions, corrections were applied for sampling biases associated with spacing and trace length. The generated fracture system in 3-D was used to make predictions of fracture traces for each fracture set on 2-D win-dows. Developed stochastic 3-D fracture network for the rock mass was validated by comparing statistical proper-ties of the observed fracture traces on scanlines with the predicted fracture traces on the scanlines. This exercise fumed out to be successful.

The Current Methods of Landslide Monitoring Using Observation Sensors for Geologic Property (지질특성 관측용 센서를 이용한 산사태 모니터링 기법 현황)

  • Chae, Byung-Gon;Song, Young-Suk;Choi, Junghae;Kim, Kyeong-Su
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.291-298
    • /
    • 2015
  • There are many landslides occurred by typhoons and intense rainfall during the summer seasons in Korea. To predict a landslide triggering it is important to understand mechanisms and potential areas of landslides by the geological approaches. However, recent climate changes make difficult to predict landslide based on only conventional prediction methods. Therefore, the importance of a real-time monitoring of landslide using various sensors is emphasized in recent. Many researchers have studied monitoring techniques of landslides and suggested several monitoring systems which can be applicable to the natural terrain. Most sensors of landslide monitoring measure slope displacement, hydrogeologic properties of soils and rocks, changes of stress in soil and rock fractures, and rainfall amount and intensity. The measured values of each sensor are transmitted to a monitoring server in real-time. The ultimate goal of landslide monitoring is to warn landslide occurrence in advance and to reduce damages induced by landslides. This study introduces the current situation of landslide monitoring techniques in each country.

Mini-T Plate Fixation for Neer Type II Distal Clavicle Fracture (Neer 분류 제 2형 원위부 쇄골 골절의 mini-T형 금속판 고정)

  • Yum, Jae-Kwang;Lee, Sang-Lim;Ra, Ho-Jong
    • Clinics in Shoulder and Elbow
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • Purpose: To evaluate and report the clinical and radiological outcomes of open reduction and internal fixation with a mini-T plate for unstable distal clavicle fractures. Materials and Methods: From December 2004 to July 2007, fifteen patients who had a fracture of the distal clavicle (Neer type II fracture) were treated with an open reduction and internal fixation using a mini-T plate. They were followed up for a minimum of one year and the clinical and radiological results were analyzed. Results: The average time to fracture union was 3.1(3~4) months. There were no complications, such as deep infection or fixation loss. The mean ASES score was 97 points (85~100points) at the last follow up period, and 14 patients had a full range of motion of the shoulder. Conclusion: Open reduction and internal fixation with a mini-T plate for unstable distal clavicle fracture is a good surgical method with good clinical and radiological results.

Treatment of Two- and Three-Part Fracture of Proximal Humerus using LCP (잠김 압박 금속판(LCP)을 이용한 상완골 근위부 이분 및 삼분 골절의 치료)

  • Shin, Sung-Il;Song, Kyung-Won;Lee, Jin-Young;Lee, Seung-Yong;Kim, Gab-Rae;Hyun, Yoon-Suk;Park, Deok-Yong
    • Clinics in Shoulder and Elbow
    • /
    • v.10 no.2
    • /
    • pp.204-211
    • /
    • 2007
  • Purpose: To evaluate the result and complication of treatment using Locking Compression Plate (LCP) for fracture of proximal humerus. Materials and Methods: Between 2004 and 2006, 21 patients with two-part and three-part fractures of the proximal humerus were treated by LCP fixation. Their average age was 54.9 years. Postoperative mean follow-up period was 22.9 months. The reduction was qualified and complication were assessed with final radiographs. The functional outcome was evaluated by Neer's rating system. Results: By Neer's functional evaluation, mean score of shoulder function was 86.3 and 18 case (86%) had excellent or satisfactory results. There was one case of nonunion but no infection or avascular necrosis of the humeral head. No correlation was found between the final result and the type of fracture, age, gender or quality of reduction. Conclusion: We obtained satisfactory result of LCP fixation for fracture of proximal humerus in this study. LCP fixation for proximal humerus fracture is a reliable method to obtain satisfactory reduction, rigid fixation and early exercise.

Lead-Zinc-Tin-Silver Mineralization of Tangguanpu Mine, Hunan Province, China: Fluid Inclusion and Sulfur Isotope Studies (중국 호남성 당관포 광산의 연-아연-주석-은 광화작용: 유체포유물 및 황동위원소 연구)

  • 허철호;윤성택;소칠섭
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.157-166
    • /
    • 2001
  • Numerous base-metal bearing hydrothermal quartz vein deposits occur in the Hunan province of southern China. The Tangguanpu lead-zinc-tin-silver mine is the major producer among these deposits. Lead-zinc-tin-silver mineralization occurs in a single stage of massive quartz veins which filled fractures in fault zones within Paleozoic metasedimentary rocks. Sphalerite, chalcopyrite, galena, pyrite, arsenopyrite and pyrrhotite are the principal sulphide minerals in the Tangguanpu lead-zinc ores with minor amounts of tin- and antimony-bearing sulphides (stannite, teallite, boulangerite and tetrahedrite). Based on the iron and zinc partitioning between coexisting stannite and sphalerite, the formation temperature for this mineral assemblage range from 300$^{\circ}$ to 330$^{\circ}$C, which relatively agree with the upper part of homogenization temperature of fluid inclusion in quartz (20T-358$^{\circ}$C). Fluid inclusion data show that main lead-zine-tin-silver mineralization occurred from $H_{2}O$-NaCl fluids with relatively low salinities (11.2-7.3 wl.% eg. NaCI) at temperatures between 207$^{\circ}$ and 358$^{\circ}$C. The relationship between homogenization temperature and salinity suggests a history of cooling and dilution followed by initial boiling. Evidence of initial fluid boiling may indicate the fluid trapping pressures of 180 bars. The ${\delta}^{34}S{{\Sigma}S}$ values of -5.0 to 1.1 %, indicate an igneous source of sulfur in the Tangguanpu lead-zinc-tin-silver hydrothermal fluids.

  • PDF

Mode of Occurrence and Chemical Composition of Electrums from the Gubong Gold-Silver Deposits, Republic of Korea (구봉 금-은광상에서 산출되는 에렉트럼의 산출상태와 화학조성)

  • 유봉철;최선규;이현구
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.191-201
    • /
    • 2002
  • The Gubong gold-silver deposits if gold-silver-bearing hydrothermal massive quartz veins which were filled the fractures along fault shear (NE, NW) zones within Precambrian banded or granitic gneiss of Gyeonggi massif. Ore mineralization of this deposits is contained within a single stage of quartz vein which was formed by multiple episodes of fracturing and healing. Ore minerals are comported mainly of arsenopyrite, pyrite, sphalerite, chalcopyrite, galena with minor amounts of pyrrhotite, marcasite and electrum. The frequency and volume percentages of electrum associated with ore minerals from this deposits are recognized as follows; 44.5% and 54.3% with arsenopyrite, 24.3% and 33.8% with quartz, 12.6% and 0.1% with pyrite, 11.0% and 4.8% with galena, 5.0% and 7.0% with sphalerite and 2.5% and 0.02% with chalcopyrite, respectively. They show irregular (41.6%), subround (34.7%), elongate (17.0%) and granular (6.6%) shapes, respectively. Their grain size ranges from 2 to 150 um, but 90.9 percent of the grains are below 30 um. The chemical composition of electrums ranges from 26.39 to 72.51 Au atomic %. These composition (Au atomic %) on the basis of associated minerals are from 44.97 to 71.75 with arsenopyrite, pyrite, sphalerite and quartz, from 44.37 to 72.51 with quartz, from 35.40 to 41.01 with sphalerite and chalcopyrite, from 26.39 to 54.84 with pyrite, chalcopyrite, quartz and galena, from 28.49 to 53.28 with galena, respectively. We suggest that optimum recovery of gold would be obtained with reference to these results.

A Study on the Correlation between Coal Mining Subsidence and Underground Goaf (페탄광지역의 지반침하발생과 지하 채굴적의 상관관계 연구)

  • Choi, Jong-Kuk;Kim, Ki-Dong;Song, Kyo-Young;Jo, Min-Jeong
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.453-464
    • /
    • 2008
  • This study is to examine a relation between coal mining subsidence occurrence at abandoned underground coal mines and underground goaf with respect to surface geology, subsurface structure, depth and thickness of coal beds and the distribution of drifts. A study is carried out at the site where susceptibility of coal mining subsidence was proven high in a previous study. In that previous study, the susceptibility of coal mining subsidence was spatially analyzed by GIS using digitized geological maps, investigation reports, digitized mining tunnel maps without consideration of subsurface structure and the multi-level arrangement of drifts. Here we analyze geological characteristics around the goaf and the distribution of coal seam based upon digitized geological maps and investigation reports on the study area. And digitized mining tunnel maps are also used to analyze the depth and multi-level arrangement of drifts. The results show that weakened surface rock strength, relatively shallow depth and large thickness of coal seam below the surface are closely related to the coal mining subsidence occurrence. Complicatedly inter-connected drifts, shallow depth of drifts and surface rock fractures are revealed as additional control factors affecting coal mining subsidence. These factors examined in this study as well as original factors should be taken into account for the quantitative estimation of coal mining subsidence occurrence at abandoned underground coal mine.

Mineralogy, Geochemistry, and Evolution of the Mn-Fe Phosphate Minerals within the Pegmatite in Cheolwon, Gyeonggi Massif (경기육괴 철원지역 페그마타이트 내 망간-철 인산염광물의 광물-지화학적 특징 및 진화과정)

  • Kim, Gyoo Bo;Choi, Seon Gyu;Seo, Jieun;Kim, Chang Seong;Kim, Jiwon;Koo, Minho
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.181-193
    • /
    • 2017
  • Mn-Fe phosphate mineral complexes included within the pegmatite are observed at Jurassic Cheolwon two-mica granite in Gyeonggi Massif, South Korea. The genetic evolution between the Cheolwon two-mica granite and pegmatite, and various trend of Mn-Fe phosphate minerals is made by later magmatic, hydrothermal, and weathering process based on mineralogical, geochemical analysis. The Cheolwon two-mica granite is identified as S-type granite, considering its chemical composition (metaluminous ~ peraluminous), post-collisional environment, low magnetic susceptibility, and existence of biotite and muscovite. The K-Ar age (ca. 153 Ma) of pegmatite is well coincident with age of the Cheolwon two-mica granite ($151{\pm}4Ma$). It indicates that these two rocks are originated from the same magma. Pegmatite indicates the LCT geochemical signature, and was classified as muscovite-rare element class / Li subclass / beryl type / beryl-columbite-phosphate subtype pegmatite. The triplite $\{(Fe^{2+}{_{0.4}},Mn_{1.6})(PO_4)(F_{0.9})\}$ is dominant phosphates in later magmatic stage which partly altered to leucophosphite $\{KFe^{3+}{_2}(PO_4)_2OH{\cdot}2H_2O\}$ and jahnsite $\{(Fe^{3+}{_{0.7}},Mn_{2.3})(PO_4)_2OH{\cdot}4H_2O\}$ by hydrothermal alteration. In particular, near fractures, the triplite has been separatelty replaced by the phosphosiderite ($Fe^{3+}PO_4{\cdot}2H_2O$) and Mn-oxide minerals during weathering stage.