DOI QR코드

DOI QR Code

Mineralogy, Geochemistry, and Evolution of the Mn-Fe Phosphate Minerals within the Pegmatite in Cheolwon, Gyeonggi Massif

경기육괴 철원지역 페그마타이트 내 망간-철 인산염광물의 광물-지화학적 특징 및 진화과정

  • Kim, Gyoo Bo (Department of Earth and Environmental Sciences, Korea University) ;
  • Choi, Seon Gyu (Department of Earth and Environmental Sciences, Korea University) ;
  • Seo, Jieun (Department of Earth and Environmental Sciences, Korea University) ;
  • Kim, Chang Seong (Department of Earth and Environmental Sciences, Korea University) ;
  • Kim, Jiwon (Korea Resources Corporation) ;
  • Koo, Minho (Korea Resources Corporation)
  • Received : 2017.04.12
  • Accepted : 2017.06.26
  • Published : 2017.06.28

Abstract

Mn-Fe phosphate mineral complexes included within the pegmatite are observed at Jurassic Cheolwon two-mica granite in Gyeonggi Massif, South Korea. The genetic evolution between the Cheolwon two-mica granite and pegmatite, and various trend of Mn-Fe phosphate minerals is made by later magmatic, hydrothermal, and weathering process based on mineralogical, geochemical analysis. The Cheolwon two-mica granite is identified as S-type granite, considering its chemical composition (metaluminous ~ peraluminous), post-collisional environment, low magnetic susceptibility, and existence of biotite and muscovite. The K-Ar age (ca. 153 Ma) of pegmatite is well coincident with age of the Cheolwon two-mica granite ($151{\pm}4Ma$). It indicates that these two rocks are originated from the same magma. Pegmatite indicates the LCT geochemical signature, and was classified as muscovite-rare element class / Li subclass / beryl type / beryl-columbite-phosphate subtype pegmatite. The triplite $\{(Fe^{2+}{_{0.4}},Mn_{1.6})(PO_4)(F_{0.9})\}$ is dominant phosphates in later magmatic stage which partly altered to leucophosphite $\{KFe^{3+}{_2}(PO_4)_2OH{\cdot}2H_2O\}$ and jahnsite $\{(Fe^{3+}{_{0.7}},Mn_{2.3})(PO_4)_2OH{\cdot}4H_2O\}$ by hydrothermal alteration. In particular, near fractures, the triplite has been separatelty replaced by the phosphosiderite ($Fe^{3+}PO_4{\cdot}2H_2O$) and Mn-oxide minerals during weathering stage.

철원 갈말-김화 지역의 쥐라기 복운모 화강암체 내 페그마타이트에서는 다양한 망간-철 인산염광물의 집합체가 산출되고 있으며, 후기 마그마 단계로부터 열수단계 및 지표 풍화 단계에서 다양한 광물상의 변화가 유도되었다. 철원 복운모 화강암은 낮은 대자율 값을 갖는 전형적인 S-형 화강암으로 중알루미나질~고알루미나질, 후-충돌대 환경을 나타내고 있다. 페그마타이트는 K-Ar 연대가 약 153 Ma로서 복운모 화강암의 K-Ar 연대($151{\pm}4Ma$)와 전반적으로 일치하고 있어 동일 기원의 마그마로 추정된다. 한편 갈말-김화 페그마타이트는 광물조성에 의한 분류기준에 의하면 백운모-희유원소 종, 리튬 세부종, 녹주석 유형에 속하는 녹주석-콜롬바이트-인산염광물으로 구분되며, LCT(Li-Cs-Ta) 계열에 해당한다. 망간 인산염광물 중 트리플라이트는 주로 후기 마그마 단계에 정출되었으며, 열수 단계에서는 망간 인산염광물의 변질광물인 루코포스파이트와 잔사이트로 정출되었다. 풍화 단계에서 트리플라이트는 포스퍼시더라이트와 망간 산화물로 교대되어 산출된다.

Keywords

References

  1. Ballouard C., Poujol M., Boluvais P., Branquet Y., Tartese R. and Vigneresse J.L. (2016) Nb-Ta fractionation in peraluminous granites: A marker of the magmatichydrothermal trasition, Geology, v.44, n.3, p.231-234. https://doi.org/10.1130/G37475.1
  2. Bohlen S.R., Montana A. and Kerrick D.M. (1991) Precise determination of the equilibria kyanite $\leftrightarrow$ silimanite and kyanite $\leftrightarrow$ andalusite and a revised triple point for $Al_2SiO_5$ polymorphs, American Mineralogist, v.76, p.677-680.
  3. Cerny, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. Canadian Mineralogist, v.43, p.2005-2026. https://doi.org/10.2113/gscanmin.43.6.2005
  4. Cerny, P. (1991) Fertile granites of Precambrian rare-element pegmatite fields: is geochemistry controlled by tectonic setting or source lithologies? Precamb. Res., v.51, p.429-468. https://doi.org/10.1016/0301-9268(91)90111-M
  5. Chappell, B.W. and White, A.J.R. (1992) I- and S-type granite in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, v.83, p.1-26. https://doi.org/10.1017/S0263593300007720
  6. Chappell, B.W. and White, A.J.R. (2001) Two contrasting granite types - 25 years later. Australian Journal of Earth Sciences, v.48, p.489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
  7. Cho, D.L. and Kim, Y.J. (2003) SHRIMP U-Pb age dating analysis of leuco-granitic dikes and biotite gneiss at the Pocheon area in the Gyeonggi Massif, Abstract book of 2003 Fall Joint conference of Geological Science of Korea, p.76.
  8. Correia Neves, L.M. and Lopes Nunes, J.E. (1968) Pegmatitic phosphates of Alto-Ligonha region (Mozambique - Portuguese East Africa). Recista de Ciencia Geologicas, v.1A, p.1-48.
  9. Coveney, R.M. and Glascock, M.D. (1989) A review of the origins of metal-rich Pennsylvanian black shales, central U.S.A., with an inferred role for basinal brines: Applied Geochemistry, v.2, p.543-561.
  10. Dana, J.D. and Dana, E.S. (1892) The system of mineralogy, 6th edition. Wiley and Sons, New York-London.
  11. Gromet, L.P., Dymek, R.F., Haskin, L.A. and Korotev, R.L. (1984) The 'North American Shale Composite': its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta, v.48, p.2469-2482. https://doi.org/10.1016/0016-7037(84)90298-9
  12. Heinrich, E.W. (1951) Mineralogy of triplite. American Mineralogist, v.36, p.256-271.
  13. Hess, F.L. and Hunt, W.F. (1913) Triplite from Eastern Nevada. American Hournal of Sciences, v.36, p.51-54.
  14. Kang, M.W., Kim, J.H. and Choi, J.B. (2011) Occurrence of the Nb-Ta Ore Bodies in Pegmatite, Mujoo, Journal of Mineral Society Korea, v.24, no.2, p.133-143. https://doi.org/10.9727/jmsk.2011.24.2.133
  15. Ki, W.S., Cho, D.L., Kim, B.C. and Jin, G.M. (2005) Geological Report of the Pocheon Sheet, Korea Institute of Geoscience and Mineral Resources. p.1-66.
  16. Kim, C.S., Go, J.S. Choi, S.G. and Kim, S.T. (2014) Geology, Mineralization, and Age of the Pocheon Fe(-Cu) Skarn Deposit, Korea, Economic and Environment Geology, v.47, p.317-333.
  17. Lee, S.R., Cho, M., Yi, K. and Stern R.A. (2000) Early Proterozoic Granulites in Central Korea: Tectonic Correlation with Chinese Cratons. Journal of Geology, v.108, p.729-738. https://doi.org/10.1086/317951
  18. Mackay, D.A.R. and Simandl, G.J. (2015) Pyrochlore and columbite-tantalite as indicator minerals for specialty metal deposit, Geochemistry: Exploration, Environment, Analysis (GEEA), v.15, p.167-178. https://doi.org/10.1144/geochem2014-289
  19. Park, H.I., Chang H.W. and Jin M.S. (1988) K-Ar Ages of Mineral Deposits in the Gyeonggi Massif, Jour. Korean Inst. Mining Geol., v.21, n.4, p.349-358.
  20. Park, K.H., Lee, B.J., Cho, D.L. and Kim, J.B. (1997) Geological map of Korea: Hwacheon, Korea Institute of Geoscience and Mineral Resources, p.1-33.
  21. Rea, J.R. and Kostiner, E. (1972) The Crystal Structure of Manganese Fluorophosphate, $Mn_2(PO_4)F$, Acta Cryst., v.B28, p.2525-2529.
  22. Roda-rovles, E., Pesquera, A., Madinabeitia, S.G.D., Ibarguchi J.G., Nizamoff, J., Simmons, W., Falster, A. and Galliski, M. (2014) On the Geochemical Chacter of Primary Fe-Mn Phosphates Belonging to the Triphylite - Lithiophilite, Graftonite - Beusite, and Triplite - Zwieselite Series: First Results and Implications for Pegmatite Petrogenesis, The Canadian Mineralogist, v.52, p.321-335. https://doi.org/10.3749/canmin.52.2.321
  23. Shannon, E.V. (1920) Notes on anglesite, anthophyllite, calcite, datolite, sillimanite, stilpnomelane, tetrahedrite and triplite. Proceedings of the United States National Museum, v.58, p.437-453. https://doi.org/10.5479/si.00963801.58-2345.437
  24. Song, K.Y. and Cho, D.L. (2007) Geological Report of the Gimhwa Sheet, Korea Institute of Geoscience and Mineral Resources, p.1-66.
  25. Taxer, K. and Bartl, H. (2004) On the dimorphy between the variscite and clinovariscite group: refined, finestructural relationship of strengite and clinostrengite, $Fe(PO_4){\cdot}_2H_2O$, Crystal Research and Technology, v.39, p.1080-1088. https://doi.org/10.1002/crat.200410293
  26. Vignola, P., Hatert, F., Cuastoni, A. and Bersani, D. (2014) On the Crysral-Chemistry of a near-endmember Triplite, $Mn^{2+}_2(PO_4)F$, from the Codera Valley (Sondrio Province, Central Alps, Italy), The Canadian Mineralogist, v.52, p.235-245. https://doi.org/10.3749/canmin.52.2.235
  27. Wallace, R.E. (1940) Crystal chemistry of the phosphates, arsenates and vanadates of the type $A_2XO_4(Z)$. American Mineralogist, v.25, p.441-479.
  28. Wolf, M.B., London, D. and Morgan, G.B. (1994) Effect of boron on the solubility of cassiterite and tantalite in granitic liquids, Geol. Soc. Am . Abster. Progr., v.26, p.A-450.