• Title/Summary/Keyword: Fracture surface

Search Result 1,865, Processing Time 0.032 seconds

Strength and fracture toughness of reduced - activation ferritic steel (JLF-1) for fusion reactor application (핵융합로용 저방사화 철강재료(JLF-1)의 강도와 파괴인성)

  • Yun, Han-Gi;Kim, Dong-Hyeon;Lee, Sang-Pil;Park, Lee-Hyeon;Gong, Yu-Sik;Katoh, Y.;Kohyama, A.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.13-18
    • /
    • 2003
  • Reduced activation ferritic steel, JLF-1 steel (Fe-9Cr-2W-V-Ta), is one of the promising candidate materials for fusion reactor applications. Fracture toughness ($J_IC$) and tensile tests were carried out at room temperature and elevated temperature ($400^{\circ}C$). Two types of CT specimen were prepared to examine the effect of rolling direction on the fracture toughness of JLF-1 steel. Four types of tensile specimen were also prepared to investigate the property by the rolling direction and welding. The Micro Vickers hardness was measured at various distances of a cross section of the TIG joints of JLF-1 steel according to the heating history of each position. Finally, the fracture surface was observed by scanning electron microscopy (SEM).

  • PDF

Evaluation of AR Characteristics on Microscopic Fracture Mechanism of A17075/CERP Hybrid Composite (Al 7075/CFRP 하이브리드 복합재료의 미시적 파괴특성에 대한 AE특성평가)

  • 이진경;이준현;윤한기
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.1-6
    • /
    • 2002
  • When compared to other composite materials such as FRP and MMC, hybrid composite material is more attractive one due to the high specific strength and the resistance to fatigue. However, the fracture mechanism of hybrid composite material is extremely complicated because of the bonding structure of metals and FRP. Recently, nondestructive technique has been used to evaluate the fracture mechanism of these composite materials. In this study. AE technique has been used to clarify the fracture mechanism and the degree of damage for Al 7075/CFRP hybrid composite material. It was found that AE event, energy and amplitude among AE parameters were effective to evaluate fracture process of Al 7075/CFRP composite material. In addition, the relationship between the AE signal and the characteristics of failure surface using optical microscope was discussed.

Life Prediction and Evaluation of Fracture Toughness of a Cr-Mo Degraded Steel During Long Service (장기 사용 Cr-Mo강 열화재의 파괴 인성 평가와 수명예측)

  • 권재도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1421-1428
    • /
    • 1992
  • It has been increasingly recognized that the safety analysis considering fracture mechanics is required of the pressure vessels made of 2 1/4 Cr-1Mo steel for safe operation due to temper-embrittlement during long term service. In this study, the fracture toughnesses of degraded and recovered 2 1/4 Cr-1Mo steels have been studied with J$_{IC}$ test specimens at room temperature and the results will be compared with the data obtained from the Charpy impact test. The fracture toughness data from above experiments will be applied to life prediction based on the surface crack growth for degraded and recovered Cr-Mo pressure vessels.

Effects of Inclusions on Fracture Toughness for 1%CrMoV Rotor Steel (1%CrMoV 로터강의 파괴인성에 미치는 개제물의 영향)

  • Jeong, Sun-Eok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2319-2325
    • /
    • 2000
  • This thesis studied that seven kinds of residual elements(inclusions) had influenced on fracture toughness($K_{IC}$) obtained by Begley-Logsdon and Rolfe-Novak model equation using tensile an d impact test data of I%CrMoV HP(high pressure) rotor steel. $K_{IC}$ design curve of ASME and fracture surface by SEM were also considered, obtained results are summarized as follows $K_{IC}$ was linearly increased with increase of temperature, effect of the inclusions was significantly over FATT. $K_{IC}$ at lower shelf temperature was quantitatively related to yield strength and was agreed well with Begley's equation. It was difficult to determine $K_{IC}$ because of specimen size and tester capacity at upper shelf temperature, but for this view point Rolfe-Novak's equation was useful. The degree of brittle fracture was dependent on FATT fundamentally, adding S, Sb to matrix decreased impact energy and adding Cu, As increased yield(tensile) strength, and the influence of the others minority inclusion was comparatively insignificant.

A Three-Dimensional Progressive Failure Model for Joints Considering Fracture Mechanics and Subcritical Crack Growth in Rock (암석파괴역학에 의한 3차원 절리면의 진행성 파괴 모델)

  • Kim, Chee-Hwan;Kemeny, John
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.86-94
    • /
    • 2009
  • A three dimensional rock joint element was developed considering fracture mechanics and subcritical crack growth to simulate non-linear behavior and the progressive failure of rock joints. Using this 3-D joint element, joint shear tests of rock discontinuities were simulated by a numerical method. The asperities on the joint surface began to fail at stress levels lower than the rock fracture toughness and continued progressively due to subcritical crack growth. As a result of progressive failing in each and every asperity, the joint showed non-linear stress-time behavior including stress hardening/softening and the reaching of a residual stress.

Effect of Ni on the Mechanical Properties and Fracture Characteristics of Austempered Ductile Iron (오스템퍼드 구상흑연주철의 파괴특성에 미치는 Ni의 영향에 관한 연구)

  • Baek, Sang-Ho;Kim, Hong-Beom;Kim, Chang-Kuy;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.14 no.1
    • /
    • pp.52-61
    • /
    • 1994
  • The effect of Ni addition, on the mechanical properties and fracture characteristics of Mo-Cu and Mo-Ni-Cu alloyed ductile iron austenitized at $900^{\circ}C$ and austempering temperatures of $250^{\circ}C$, $300^{\circ}C$ and $350^{\circ}C$. The tensile strength, yield strength and hardness are decreased and elongation and impact value are increased in both Mo-Cu and Mo-Ni-Cu alloyed austempered ductile iron, with increased austempering temperature. According to the austempering temperature are increased, the amount of retained austenite are increased. Maximum value of fracture toughness is obtained at $350^{\circ}C$ austempering temperature at this condition, the amount of retained austenite came to 40% in Mo-Ni-Cu alloyed ADI and 34% in Mo-Cu alloyed ADI. The fracture surface of ADI which had represented high toughness are showed a quasi-cleavage pattern and a dimple pattern with micro void. Comparing the fracture characteristics of Mo-Cu alloyed ADI with that of Mo-Ni-Cu alloyed ADI, the latter was superior to the former.

  • PDF

A Study of the fracture of intermetallic layer in electroless Ni/Au plating (무전해 니켈/금도금에서의 내부 금속층의 결함에 대한 연구)

  • 박수길;정승준;김재용;엄명헌;엄재석;전세호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.708-711
    • /
    • 1999
  • The Cu/Ni/Au lamellar structure is extensively used as an under bump metallization on silicon file, and on printed circuit board(PCB) pads. Ni is plated Cu by either electroless Ni plating, or electrolytic Ni plating. Unlike the electrolytic Ni plating, the electroless Ni plating does not deposit pure Ni, but a mixture of Ni and phosphorous, because hypophosphite Is used in the chemical reaction for reducing Ni ions. The fracture crack extended at the interface between solder balls of plastic ball grid (PBGA) package and conducting pads of PCB. The fracture is duets to segregation at the interface between Ni$_3$Sn$_4$intermetallic and Ni-P layer. The XPS diffraction results of Cu/Ni/Au results of CU/Ni/AU finishs showed that the Ni was amorphous with supersaturated P. The XPS and EDXA results of the fracture surface indicated that both of the fracture occurred on the transition lesion where Sn, P and Ni concentrations changed.

  • PDF

A Experimental Study on Strength Safety of Rail Steel using Gas Pressure Welding (레일 가스압접부의 강도 안전성에 관한 실험적 연구)

  • Kim, Kyung-Seob
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.266-271
    • /
    • 2012
  • This study was carried out for the purpose of improving driving safety and comfort of the railways quickly becoming popular. To conducted gas pressure welding to ensure the strength safety of continuous welded rail and rotating bending test tensile test was conducted. The element to determine the tensile strength of gas pressure welds at experiments be attributed to more upsetting length than pressure, according to increases of upsetting length, from brittle fracture to ductile fracture was observed. Through the biopsy of the fracture surface, according to the presence of brittle fracture could be evaluated to strength safety. In addition, mechanical strength of gas pressure welding depending on changes in upsetting length was different. Rotary bending test results were obtained to the infinite life according to exhibited higher fatigue limit of 373MPa at upsetting length 25mm.

Finite Element Analysis of Subsurface Crack Propagation in Half-space Due to Sliding Contact (유한요소법을 이용한 미끄럼 접촉시의 반무한체 내의 수평균열 전파해석)

  • 이상윤;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.297-302
    • /
    • 1999
  • Finite element analysis is peformed about the crack propagation in half-space due to sliding contact. The analysis is based on linear elastic fracture mechanics and stress intensity factor concept. The crack location is fixed and the friction coefficient between asperity and half-space is varied to analyze the effect of surface friction on stress Intensity factor for horizontal crack. The crack propagation direction is predicted based on the maximum range of shear and tensile stress intensity factor.

  • PDF

Failure Paths Analyses of the Leadframe/EMC System

  • Lee, H.Y.;Kim, S.R.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2000
  • Copper-based leadframe sheets were oxidized in a black-oxide forming solution, and molded with epoxy molding compound (EMC) to form sandwiched double-cantilever beam (SDCB) specimens. The adhesion strength of leadframe/EMC interface was measured in terms of fracture toughness by using SDCB specimens and the fracture surfaces were analyzed by various equipments such as glancing-angle XRD, AFM, and SEM. Results showed that three types of failure paths, which were closely related to the surface condition of leadframes before molding.

  • PDF