• Title/Summary/Keyword: Fracture strain(Failure strain)

Search Result 224, Processing Time 0.02 seconds

Plasticity and Fracture Behaviors of Marine Structural Steel, Part II: Theoretical Backgrounds of Fracture (조선 해양 구조물용 강재의 소성 및 파단 특성 II: 파단의 이론적 배경)

  • Choung, Joon-Mo;Shim, Chun-Sik;Kim, Kyung-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.92-100
    • /
    • 2011
  • The main goal of this paper is to provide the theoretical background for the fracture phenomena in marine structural steels. In this paper, various fracture criteria are theoretically investigated: shear failure criteria with constant failure strain and stress triaxiality-dependent failure strain (piecewise failure and Johnson-Cook criteria), forming limit curve failure criterion, micromechanical porosity failure criterion, and continuum damage mechanics failure criterion. It is obvious that stress triaxiality is a very important index to determine the failure phenomenon for ductile materials. Assuming a piecewise failure strain curve as a function of stress triaxiality, the numerical results coincide well with the test results for smooth and notched specimens, where low and high stress triaxialities are observed. Therefore, it is proved that a failure criterion with reliable material constants presents a plastic deformation process, as well as fracture initiation and evolution.

Rock fracturing mechanisms around underground openings

  • Shen, Baotang;Barton, Nick
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.35-47
    • /
    • 2018
  • This paper investigates the mechanisms of tunnel spalling and massive tunnel failures using fracture mechanics principles. The study starts with examining the fracture propagation due to tensile and shear failure mechanisms. It was found that, fundamentally, in rock masses with high compressive stresses, tensile fracture propagation is often a stable process which leads to a gradual failure. Shear fracture propagation tends to be an unstable process. Several real case observations of spalling failures and massive shear failures in boreholes, tunnels and underground roadways are shown in the paper. A number of numerical models were used to investigate the fracture mechanisms and extents in the roof/wall of a deep tunnel and in an underground coal mine roadway. The modelling was done using a unique fracture mechanics code FRACOD which simulates explicitly the fracture initiation and propagation process. The study has demonstrated that both tensile and shear fracturing may occur in the vicinity of an underground opening. Shallow spalling in the tunnel wall is believed to be caused by tensile fracturing from extensional strain although no tensile stress exists there. Massive large scale failure however is most likely to be caused by shear fracturing under high compressive stresses. The observation that tunnel spalling often starts when the hoop stress reaches $0.4^*UCS$ has been explained in this paper by using the extension strain criterion. At this uniaxial compressive stress level, the lateral extensional strain is equivalent to the critical strain under uniaxial tension. Scale effect on UCS commonly believed by many is unlikely the dominant factor in this phenomenon.

Distortion and Dilatatioin in the Tensie Failure of Paper

  • Park, Jong-Moon;James L. Thorpe
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.73-85
    • /
    • 1999
  • Yield and fracture are separated in the tensile failure of paper. Failure in the machine direction of photocopy paper is contrasted with failure in the cross-machine direction . The ratios of distortion (shape change) to dilatation (volume change) for individual elements at yield and fracture are described. The ratios of distortion to dilatation are measured and compared to predicted values of the strain energy density theory. To evaluate the effect of the angle from the principal material direction on the strain energy density theory. To evaluate the effect of the angle from the principal material direction on the strain energy density factor, samples are prepared from machine direction to cross-machine direction in 15 degree intervals. the strain energy density of individual elements are obtained by the integration of stress from finite element analysis with elastic plus plastic strain energy density theory. Poison's ratio and the angle from the principal material direction have a great effect ion the ratio fo distortion to dilatation in paper. During the yield condition, distortion prevails over dilatation . At fracture, dilatation is at a maximum.

  • PDF

Study on Strain Localization and Progressive Failure of Concrete (콘크리트의 변형률 국소화 및 진행성 파괴에 관한 연구)

  • 송하원;김형운;우승민
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.181-192
    • /
    • 1999
  • The progressive failure following strain localization in concrete can be analyzed effectively using finite element modeling of fracture process zone of concrete with a finite element embedded discontinuity. In this study, a finite element with embedded discontinuous line is utilized for the analysis of progressive failure in concrete. The finite element with embedded discontinuity is a kind of discrete crack element, but the difficulties in discrete crack approach such as remeshing or adding new nodes along with crack growth can be avoided. Using a discontinuous shape function for this element, the displacement discontinuity is embedded within an element and its constitutive equation is modeled from the modeling of fracture process zone. The element stiffness matrix is derived and its dual mapping technique for numerical integration is employed. Then, a finite element analysis program with employed algorithms is developed and failure analysis results using developed finite element program are verified through the comparison with experimental data and other analysis results.

Development of Stress-Modified Fracture Strain Criterion for Ductile Fracture of API X65 Steel (API X65 강의 연성파괴 해석을 위한 삼축응력 영향을 고려한 파괴변형률 기준 개발)

  • Oh Chang-Kyun;Kim Yun-Jae;Park Jin-Moo;Baek Jong-Hyun;Kim Woo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1621-1628
    • /
    • 2005
  • This paper presents a stress-modified fracture strain for API X65 steel used for gas pipeline, as a function of stress triaxiality. To determine the stress-modified fracture strain, tension test of bars with four different notch radii, made of API X65 steel, is firstly performed, from which true fracture strains are determined as a function of notch radius. Then detailed elastic-plastic, large strain finite element (FE) analyses are performed to estimate variations of stress triaxiality in the notched bars with load. Combining experimental with FE results provides the true fracture strain as a function of stress triaxiality, which is regarded as a criterion of ductile fracture. Application of the developed stress-modified fracture strain to failure prediction of gas pipes made of API X65 steel with various types of defects is discussed.

Collision Simulation of a Floating Offshore Wind Turbine Considering Ductile Fracture and Hydrodynamics Using Hydrodynamic Plug-in HydroQus

  • Dong Ho Yoon;Joonmo Choung
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.111-121
    • /
    • 2023
  • This paper intends to introduce the applicability of HydroQus to a problem of a tanker collision against a semi-submersible type floating offshore wind turbine (FOWT). HydroQus is a plug-in based on potential flow theory that generates interactive hydroforces in a commercial Finite element analysis (FEA) code Abaqus/Explicit. Frequency response analyses were conducted for a 10MW capacity FOWT to obtain hydrostatic and hydrodynamic constants. The tanker was modeled with rigid elements, while elastic-plastic elements were used for the FOWT. Mooring chains were modeled to implement station keeping ability of the FOWT. Two types of fracture models were considered: constant failure strain model and combined failure strain model HC-LN model composed of Hosford-Coulomb (HC) model & localized necking (LN) model. The damage extents were evaluated by hydroforces and failure strain models. The largest equivalent plastic strain observed in the cases where both restoring force and radiation force were considered. Stress triaxiality and damage indicator analysis showed that the application of HC-LN model was suitable. It could be stated that applications of suitable failure strain model and hydrodynamics into the collision simulations were of importance.

Failure simulation of nuclear pressure vessel under severe accident conditions: Part II - Failure modeling and comparison with OLHF experiment

  • Eui-Kyun Park;Jun-Won Park;Yun-Jae Kim;Yukio Takahashi;Kukhee Lim;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4134-4145
    • /
    • 2023
  • This paper proposes strain-based failure model of A533B1 pressure vessel steel to simulate failure, followed by application to OECD lower head failure (OLHF) test simulation for experimental validation. The proposed strain-based failure model uses simple constant and linear functions based on physical failure modes with the critical strain value determined either using the lower bound of true fracture strain or using the average value of total elongation depending on the temperature. Application to OECD Lower Head Failure (OLHF) tests shows that progressive deformation, failure time and failure location can be well predicted.

Plasticity and Fracture Behaviors of Marine Structural Steel, Part III: Experimental Study on Failure Strain (조선 해양 구조물용 강재의 소성 및 파단 특성 III: 파단 변형률에 관한 실험적 연구)

  • Choung, Joon-Mo;Shim, Chun-Sik;Kim, Kyung-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.53-65
    • /
    • 2011
  • This is the third of several companion papers dealing with the derivation of material constants for ductile failure criteria under hydrostatic stress. It was observed that the ultimate engineering stresses and elongations at fracture from tensile tests for round specimens with various notch radii tended to increase and decrease, respectively, because of the stress triaxiality. The engineering stress curves from tests are compared with numerical simulation results, and it is proved that the curves from the two approaches very closely coincide. Failure strains are obtained from the equivalent plastic strain histories from numerical simulations at the time when the experimental engineering stress drops suddenly. After introducing the new concept of average stress triaxiality and accumulated average strain energy, the material constants of the Johnson-Cook failure criterion for critical energies of 100%, 50%, and 15% are presented. The experimental results obtained for EH-36 steel were in relatively good agreement with the 100% critical energy, whereas the literature states that aluminum fits with a 15% critical energy. Therefore, it is expected that a unified failure criterion for critical energy, which is available for most kinds of ductile materials, can be provided according to the used materials.

Fracture Simulation of Low-Temperature High-Strength Steel (EH36) using User-Subroutine of Commercial Finite Element Code (상용 유한요소코드 사용자-서브루틴을 이용한 저온용 고장력강 (EH36)의 파단 시뮬레이션)

  • Choung, Joonmo;Nam, Woongshik;Kim, Younghun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.34-46
    • /
    • 2014
  • This paper discusses a new formulation for the failure strain in the average stress triaxiaility domain for a low-temperature high-strength steel (EH36). The new formula available at a low average stress triaxiality zone is proposed based on the comparison of two results from tensile tests of flat type specimens and their numerical simulations. In order to confirm the validity of the failure strain formulation, a user-subroutine was developed using Abaqus/Explicit, which is known to be one of the most popular commercial finite element analysis codes. Numerical fracture simulations with the user-subroutine were conducted for all the tensile tests. A comparison of the engineering stress-strain curves and engineering failure strain obtained from the numerical simulation with the user-subroutine for the tensile tests revealed that the newly developed user-subroutine effectively predicts the initiation of failure.

Localized failure in damage dynamics

  • Do, Xuan Nam;Ibrahimbegovic, Adnan;Brancherie, Delphine
    • Coupled systems mechanics
    • /
    • v.4 no.3
    • /
    • pp.211-235
    • /
    • 2015
  • In this work we present a one-dimensional damage model capable of representing the dynamic fracture for elastodamage bar with combined hardening in fracture process zone - FPZ and softening with embedded strong discontinuities. This model is compared with another one we recently introduced (Do et al. 2015) and it shows a good agreement between two models. Namely, it is indicated that strain-softening leads to a sensitivity of results on the mesh discretization. Strain tends to localization in a single element which is the smallest possible area in the finite element simulations. The strain-softening element in the middle of the bar undergoes intense deformation. Strain increases with increasing mesh refinement. Strain in elements outside the strain-softening element gradually decreases to zero.