DOI QR코드

DOI QR Code

Localized failure in damage dynamics

  • Do, Xuan Nam (Universite de Technologie Compiegne / Sorbonne Universites, Laboratoire Roberval de Mecanique) ;
  • Ibrahimbegovic, Adnan (Universite de Technologie Compiegne / Sorbonne Universites, Laboratoire Roberval de Mecanique) ;
  • Brancherie, Delphine (Universite de Technologie Compiegne / Sorbonne Universites, Laboratoire Roberval de Mecanique)
  • 투고 : 2015.05.17
  • 심사 : 2015.09.05
  • 발행 : 2015.09.25

초록

In this work we present a one-dimensional damage model capable of representing the dynamic fracture for elastodamage bar with combined hardening in fracture process zone - FPZ and softening with embedded strong discontinuities. This model is compared with another one we recently introduced (Do et al. 2015) and it shows a good agreement between two models. Namely, it is indicated that strain-softening leads to a sensitivity of results on the mesh discretization. Strain tends to localization in a single element which is the smallest possible area in the finite element simulations. The strain-softening element in the middle of the bar undergoes intense deformation. Strain increases with increasing mesh refinement. Strain in elements outside the strain-softening element gradually decreases to zero.

키워드

참고문헌

  1. Alfaiate, J., Wells, G.N., Sluys, L.J. (2002), "On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture", Eng. Fract. Mech., 69(6), 661-686. https://doi.org/10.1016/S0013-7944(01)00108-4
  2. Armero, F. and Linder, C. (2009), "Numerical simulation of dynamic fracture using finite elements with embedded discontinuities", Int. J. Fracture, 160(2), 119-141. https://doi.org/10.1007/s10704-009-9413-9
  3. Bazant, Z.P. (1976), "Instability, ductility, and size effect in strain-softening concrete", J. Eng. Mech. Div., 102, 331-344.
  4. Bazant, Z.P. and Belytschko, T.B. (1985), "Wave propagation in a strain-softening bar: Exact solution", J. Eng. Mech. - ASCE, 111(3), 381-389. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:3(381)
  5. Brancherie, D. and Ibrahimbegovic, A. (2009), "Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures: Part I: theoretical formulation and numerical implementation", Eng. Computations, 26(1-2), 100-127. https://doi.org/10.1108/02644400910924825
  6. Do, X.N., Ibrahimbegovic, A. and Brancherie, D. (2015), "Combined hardening and localized failure with softening plasticity in dynamics", Coupled Syst. Mech., 4(2), 1-22. https://doi.org/10.12989/csm.2015.4.1.001
  7. Huespe, A.E., Oliver, J., Sanchez, P.J., Blanco, S. and Sonzogni, V. (2006), "Strong discontinuity approach in dynamic fracture simulations", Mecanica Computacional, 25, 1997-2018.
  8. Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Springer, Berlin, Germany.
  9. Ibrahimbegovic, A. and Brancherie, D. (2003), "Combined hardening and softening constitutive model of plasticity: precursor to shear slip line failure", Comput. Mech., 31(1-2), 88-100. https://doi.org/10.1007/s00466-002-0396-x
  10. Ibrahimbegovic, A., Hajdo, E. and Dolarevic, S. (2013), "Linear instability or buckling problems for mechanical and coupled thermomechanical extreme conditions", Coupled Syst. Mech., 2(4), 349-374. https://doi.org/10.12989/csm.2013.2.4.349
  11. Ibrahimbegovic, A. and Melnyk, S. (2007), "Embedded discontinuity finite element method for modeling of localized failure in heterogeneous materials with structured mesh: an alternative to extended finite element method", Comput. Mech., 40(1), 149-155. https://doi.org/10.1007/s00466-006-0091-4
  12. Kachonov, L.M. (1958), "Time of the rupture process under creep conditions", Izv. Akad. Nauk USSR Otd. Tech., 8, 26-31.
  13. Ngo, V.M., Ibrahimbegovic, A. and Hajdo, E. (2014), "Nonlinear instability problems including localized plastic failure and large deformations for extreme thermomechanical load", Coupled Syst. Mech., 3(1), 89-110. https://doi.org/10.12989/csm.2014.3.1.089
  14. Oliver, J. (1996), "Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 2: numerical simulation", Int. J. Numer. Meth. Eng., 39(21), 3601-3623. https://doi.org/10.1002/(SICI)1097-0207(19961115)39:21<3601::AID-NME64>3.0.CO;2-4
  15. Simo, J.C., Oliver, J. and Armero, F. (1993), "An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids", Comput. Mech., 12(5), 277-296. https://doi.org/10.1007/BF00372173
  16. Taylor, R., FEAP Finite Element Analysis Program, University of California: Berkeley. (Available from http://www.ce.berkeley.edurlt).
  17. Wells, G.N. and Sluys, L.J. (2000), "A new method for modeling cohesive cracks using finite elements. Int. J. Numer. Meth. Eng., 50(12), 2667-2682. https://doi.org/10.1002/nme.143