• 제목/요약/키워드: Fracture property

Search Result 449, Processing Time 0.025 seconds

The Initiation of Slip on Frictional Fractures (마찰 전단면의 전단거동과 에너지방출률)

  • Park, Chi-Hyun
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.344-351
    • /
    • 2010
  • Slip along a frictional fracture can be approached as initiation and propagation of a mode II crack along its own plane. Fracture mechanics theories predict that under pure mode II loading initiation will occur when the energy release rate of the fracture attains a critical value ($G_{IIC}$), which is generally taken as a material property. For the past few years the rock mechanics group at Purdue University has investigated experimentally the dependence of $G_{IIC}$ on normal stress and on the frictional characteristics of a fracture. A number of experiments has been conducted first on acrylic, a material that, using photoelastic methods, allows visualization of the stress field ahead of the fracture tip; and later on gypsum, a rock model material with relatively low unconfined compression strength. The experimental investigation has been expanded to include other frictional materials with higher unconfined compression strength. Direct shear tests have been conducted on specimens made with cement paste. New observations together with previous experiments indicate that $G_{IIC}$ can only be considered a material property when the peak friction angle of the discontinuity is similar to the residual friction angle; otherwise the critical energy release rate increases with normal stress.

Formability Evaluation of Advanced High-strength Steel Sheets in Role Expansion Based on Combined Continuum-Fracture Mechanics (복합 연속체 파괴 역학에 기초한 초고강도강 판재의 구멍 넓힘 시험 성형성 평가)

  • Ma, N.;Park, T.;Kim, D.;Yoo, D.;Kim, Chong-Min;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.227-230
    • /
    • 2009
  • In order to predict failure behavior of advanced high-strength steel sheets (AHSS) in hole expansion tests, damage model was developed considering surface condition sensitivity (with specimens prepared by milling and punching: 340R, TRIP590, TWIP940). To account for the micro-damage initiation and evolution as well as macro-crack formation, the stress triaxiality dependent fracture criterion and rate-dependent hardening and ultimate softening behavior were characterized by performing numerical simulations and experiments for the simple tension and V-notch tests. The developed damage model and the characterized mechanical property were incorporated into the FE program ABAQUS/Explicit to perform hole expansion simulations, which showed good agreement with experiments.

  • PDF

Mechanical Properties of Hydrated Cement Paste: Development of Structure-property Relationships

  • Ghebrab, Tewodros T.;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • Theoretical models based on modern interpretations of the morphology and interactions of cement hydration products are developed for prediction of the mechanical properties of hydrated cement paste (hcp). The models are based on the emerging nanostructural vision of calcium silicate hydrate (C-S-H) morphology, and account for the intermolecular interactions between nano-scale calcium C-S-H particles. The models also incorporate the effects of capillary porosity and microcracking within hydrated cement paste. The intrinsic modulus of elasticity and tensile strength of hydrated cement paste are determined based on intermolecular interactions between C-S-H nano-particles. Modeling of fracture toughness indicates that frictional pull-out of the micro-scale calcium hydroxide (CH) platelets makes major contributions to the fracture energy of hcp. A tensile strength model was developed for hcp based on the linear elastic fracture mechanics theories. The predicted theoretical models are in reasonable agreements with empirical models developed based on the experimental performance of hcp.

A Study on the Coating Cracking on a Substrate in Bending I : Theory (굽힘모드하에서의 코팅크랙킹의 분석 I : 이론)

  • Sung-Ryong Kim;John A. Nairn
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.38-47
    • /
    • 2000
  • The coating cracking on a substrate system was analyzed using a fracture mechanics approach. Multiple cracking in the bending configuration was analyzed using a variational mechanics approach to fracture mechanics of coatin $g_strate system. The strain energy release rate on bending geometry developed permits the prediction of crack growth in the coating layer on a substrate. Also, it can be used appropriately to the characterization of multiple cracking of coating. The obtained critical strain energy release rate (in-situ fracture toughness) will be a material property of coating and it will provide a better insight into coating cracking.ng.

  • PDF

Fracture Behavior of Concrete Beam Subjected to Dynamic Loading (동적하중을 받는 콘크리트보의 파괴거동)

  • Kang, Sung-Hoo;Kim, Woo;Park, Sun-Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.257-262
    • /
    • 1995
  • In this study, after concrete cylinders were made on the condition of varying water-to -cement ratio, and cured 80 days compressive strength and splitting tensile strength were performed and moduls of elasticy is obtained. The fracture energy was obtained by acting three point bending on the 80cm in length. This test involved static loading test and dynamic loading test. In this work, the new interrelation of the material constants was obtained clearly and the property of the mixture was inspected, including the relation between the fracture energy and all kind of the material constants.

  • PDF

Microstructure Formation and mechanical Properties of $\alpha$-$\beta$ ($\alpha$-$\beta$ SiAlON의 미세구조 형성과 특성)

  • 최민호;김득중
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.169-176
    • /
    • 1996
  • The specimens which were prepared from $\alpha$-Si3N4 with additions of YAG(3Y2O3.5Al2O3)-10 wt% and various AlN contents were sintered in N2 atmosphere at 1$700^{\circ}C$ The effect of $\alpha$,$\beta$-solid solution contents and sintering time on mechanical properties were investigated. As the content of $\beta$-solid solution and sintering time increased the hardness is reduced but the hardness of specimen sintered over 10 hours is constant irrespective of sintering time. While the fracture toughness increased with increasing of $\beta$-solid solution and sintering time. The fracture toughness of specimen with 80% $\beta$-solid solution content increased from 3.89 to 6.66 MPam1/2 with sintering sintering up to 20 hours/ But the amount of increased fracture toughness of specimen with below 20% $\beta$-solid solution content is not significant.

  • PDF

Treatment of Stainless Steel Cladding in Pressurized Thermal Shock Evaluation: Deterministic Analyses

  • Changheui Jang;Jeong, lll-Seok;Hong, Sung-Yull
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.132-144
    • /
    • 2001
  • Fracture mechanics is one of the major areas of the pressurized thermal shock (PTS) evaluation. To evaluate the reactor pressure vessel integrity associated with PTS, PFM methodology demands precise calculation of temperature, stress, and stress intensity factor for the variety of PTS transients. However, the existence of stainless steel cladding, with different thermal, physical, and mechanical property, at the inner surface of reactor pressure vessel complicates the fracture mechanics analysis. In this paper, treatment schemes to evaluate stress and resulting stress intensity factor for RPV with stainless steel clad are introduced. For a reference transient, the effects of clad thermal conductivity and thermal expansion coefficients on deterministic fracture mechanics analysis are examined.

  • PDF

Integrity Evaluation of Semi-Elliptical Crack Under Thermal Shock (열충격하에 있는 반타원균열에 대한 파괴건전성 평가)

  • 이강용;김종성;김건영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3136-3148
    • /
    • 1994
  • This paper proposed the method of fracture integrity evaluation for semi-elliptical crack. Plane strain fracture toughnesses are used to compare with the thermal shock stress intensity factors for semi-elliptical crack obtained by Vainshtok weight function method. The method is applied to the finite Cr Mo V and 2.25Cr Mo steel plates with semi-elliptical crack under the thermal shock. For the purpose, tensile property and fracture toughness with respect to the temperature are measured. To verify the method, thermal shock experiments are carried. The theoretical predictions are in good agreement with the experiments.

Influence of Reinforced Fiber on Local Failure of the Concrete subjected to Impact of High-Velocity Projectile (고속 비상체 충돌에 의한 콘크리트의 국부파괴에 미치는 혼입 섬유의 영향)

  • Kim, Hong-Seop;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Kim, Jung-Hyun;Lee, Young-Wook;Han, Sang-Hyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.139-140
    • /
    • 2014
  • The purpose of this study in to evaluate relationship between mechanical properties of materials and fiber type by reinforced fiber with high-velocity impact fracture behavior of fiber reinforced concrete. As a result, for fracture behavior by high-velocity impact, it is considered that impact fracture behavior is not affected by static mechanical properties directly but affected by fiber type and density of the number of fiber. It is necessary to consider type, shape, mechanical properties and the number of fiber with flexural and tensile performance for the evaluation on impact resistance performance of fiber reinforced concrete.

  • PDF

Dynamic Stress Intensity Factors and Dynamic Crack Propagation Velocities in Polycarbonate WL-RDCB Specimen (WL-RDCB 시편의 동적 균열전파속도와 동적 응력확대계수)

  • 정석주;한민구
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.3-9
    • /
    • 1996
  • Dynamic fracture characteristics of Polycarbonate WL-RDCB specimen were investigated. The dynamic crack propagation velocities in these specimens were measured by using both high speed camera system and silver paint grid method developed and justified in the INHA Fracture Mechanics Laboratory. The measured crack propagation velocities were fed into the INSAMCR code(a dynamic finite element code which has been developed in the INBA Fracture Mechanics Laboratory) to extract the dynamic stress intensity factors. It has been confirmed that both dynamic crack arrest toughness and the static crack arrest toughness depend on both the geometry and the dynamic crack propagation velocity of specimens. The maximum dynamic crack propagation velocity of Polycarbonate WL-RDCB specimen was found to be dependent on the material property, geometry and the type of loading. The dynamic cracks in these Polycarbonate WL-RDCB specimens seemed to propagate in a successive manner, involving distinguished 'propagation-arrest-propagation-arrest' steps on the microsecond time scale. It was also found that the relat-ionship between dynamic stress intensity factor and dynamic crack propagation velocities might be represented by the typical '$\Gamma$'shape.

  • PDF