• 제목/요약/키워드: Fracture property

검색결과 447건 처리시간 0.028초

The Weldability of Magnesium Alloys for Car Industry

  • Lee, Mok-Young;Chang, Woong-Seong;Yoon, Byung-Hyun
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.370-376
    • /
    • 2005
  • Magnesium alloys are becoming important material for light weight car body, due to their low specific density but high specific strength. However they have a poor weldability, caused high oxidization tendency and low vapor temperature. In this study, the welding performance of magnesium alloys was investigated for automobile application. The materials were rolled magnesium alloy sheet contains Al and Zn such as AZ3l , AZ6l and AZ9l. Three types of welding process were studied, that were GTAW, Laser beam welding and FSW. To evaluate the weldability, we examined the appearance of welding bead. Also we checked bead shape and internal defects such as crack and porosity on cross section of welding bead. The mechanical property was measured for welded specimen by tensile test. For determination of the strength change by welding process, the hardness profile across the welding center was measured. For the results, the tensile properties of welded specimen were decreased obviously on all welding process. For the fusion welding process such as GTAW and laser beam welding, the surface of the welding bead was covered with oxidized magnesium dust but it was removed by simple cleaning work as wipe-out with tissue. Also under cut, that caused vaporization of base metal was occurred. for the friction stir welding, there was no oxidation, under-cut or internal defects. However it had poor weld performance, the reason was cleavage fracture occurred at plastic deformation zone. For welding of magnesium alloy, the laser beam welding process was recommended.

  • PDF

현가장치재의 부식피로균열진전에 미치는 쇼트피닝의 영향 (An Effect of Shot Peening on Corrosion Fatigue Crack Growth of Suspension Material)

  • 박경동;안재필
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.88-94
    • /
    • 2006
  • The compressive residual stress, which is induced by shot peening process, has the effect of increasing the intrinsic fatigue strength of surface and therefore would be beneficial in reducing the probability of fatigue damage. However, the effect of shot peening in corrosion environment was not known. In this study, investigated is the effect of shot peening on corrosion fatigue crack growth of SAE 5155 steel immersed in 6% $FeCl_3$ solution and corrosion characteristics with considering fracture mechanics. The results of the experimental study corrosion fatigue characteristics of SAE 5155 are as follows; the fatigue crack growth rate of the shot peening material was lower than that of the non-peening material. And fatigue life shows more improvement in the shot peening material than in non-peening material. This is due to the compressive residual stress of surface increases resistance of corrosion fatigue crack propagation. It is assumed that the shot peening process improve corrosive resistance and mechanical property.

해수 환경하에서 알루미늄합금(5083F)의 외부전원법에 의한 최적 방식전위 결정에 관한 연구 (Investigation on Optimum Protection Potential Decision of Al Alloy(5083F) in Sea Water by Impressed Current Cathodic Protection)

  • 김성종;감정일;김종신
    • 한국표면공학회지
    • /
    • 제40권6호
    • /
    • pp.262-270
    • /
    • 2007
  • Recently, there has been a new appreciation of aluminum alloys as materials that are capable of reducing the environment load. This is because aluminum alloys are lightweight, easy to recycle, permit miniaturization, and have environmental friendly properties. In this study, we investigated the mechanical and electrochemical properties of 5083F aluminum alloys using slow strain rate test(SSRT) and potentiostatic tests under various potential conditions. In the potentiostatic tests, the current density in the potential range from -0.7 to -1.4V after 1,200 s was low. After considering the results of the potentiostatic tests, maximum tensile strength, yield strength, elongation, time-to-fracture, observation of fractured specimen and fractography analysis, the optimum protection potential range was between -1.3 and -0.7V(Ag/AgCl).

폴리머-강섬유를 혼입한 고강도 콘크리트 보의 보수·보강 (Repair and Rehabilitation of Polymer-Steel Fibrous High Strength Concrete Beams)

  • 곽계환;김원태
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.135-143
    • /
    • 2002
  • This study is to investigate its use by applying stainless steel wire mash reinforcement method of construction, which is newly developed, on the high strength concrete beam mixed with polymer-steel fiber. In this test, it is investigated and observed such as follows: the ultimate load, the initial flexure crack load, the initial diagonal tension crack load, the relation between load and deflection, load-strain relation, and also crack growth and fracture aspect by increasing load. The results of this test are; first, the stainless steel wire showed some useful reinforcement effects in multiplying the steel's resisting force of moment to the tensile force of beam or slab: second, the promoting strength and internal force was made in the process of the integration at the same reaction by using the penetrating polymer-mortar with an excellent durability and physical property. On the basis of this results, because such instances in applying stainless steel wire Mash reinforcement method of construction have been few so far, through the experimental investigation such as this test over and over again, the efficient and useful method must be developed for the practice.

시추공 간 전단대 특성 규명을 위한 고해상 탄성파 토모그래피 (High Resolution Cross-well Seismic Tomography for Description of Shear Zone in Inter-well Region)

  • 이두성
    • 지구물리와물리탐사
    • /
    • 제9권4호
    • /
    • pp.255-260
    • /
    • 2006
  • 인접한(대략 1.5 m) 두 개의 시추공에서 확인한 화강암 전단대는 그 폭과 물성(투수율)에서 상당한 차이가 있다. 시추공 간 전단대의 투수율의 분포 특성을 규명하고자 고주파수(>10 kHz) 신호에 의한 시추공 탄성파 토모그래피 탐사를 실시하였다. 시추공에서 획득한 투수율과 탄성파 속도 토모그램에 표출된 속도 패턴을 대비한 결과는 고해상 공대공 속도 토모그램이 전단대의 특성, 즉 균열빈도, 폭, 연장 등에 대한 유용한 정보를 제공할 수 있다는 사실을 제시하였다.

보강된 노후 구조물 파괴거동 예측을 위한 수치해석기법 개발 (Numerical Analysis of Fracture Behavior in Aged RC Structures)

  • 신승교;고태호;김문겸;임윤묵
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1031-1036
    • /
    • 2000
  • In this study, a numerical simulation that can effectively predict the strengthening effect of repaired aged RC structures is developed using the axial deformation link elements. In repaired structures, concrete and interface are modeled as quasi-brittle materials. An elastic-perfectly plastic constitutive relationship is introduced for reinforcing bars. Also, a linear-elastic relationship for repair materials such as FRP or CFS. Structural deterioration in terms of corrosion of steel rebar is considered. The interfacial property between steel and concrete which is reduced by corrosion of steel rebar is obtained by comparing numerical results with experimental results of pull out tests. Obtained values are used in repaired reinforced concrete structures under flexural loading conditions. To investigate strengthening effect of the structures repaired with carbon fiber sheet(CFS), repaired and unrepaired RC structures are analyzed numerically. From analysis, rip-off, debonding and rupture failure mechanisms of interface between substrate and CFS can be determined. Finally, strengthening effect according to the variation of interfacial material properties is investigated, and it is shown that interfacial material properties have influence on the mechanical behavior of repaired structure systems Therefore, the developed numerical method using axial deformation link elements can use for determining the strengthening effects and failure mechanism of repaired aged RC structure.

배향된 휘스커 종자에 의해 제조된 질화규소 세라믹 복합체의 기계적 특성 (Mechanical Properties of Si3N4 Ceramic Composites with Aligned Whisker Seeds)

  • 김한길;방국수;정상진;박찬
    • 한국해양공학회지
    • /
    • 제27권2호
    • /
    • pp.8-12
    • /
    • 2013
  • Four kinds of silicon nitride composites with tri-laminate structure were prepared by stacking tapes with aligned ${\beta}-Si_3N_4$ whisker seeds. The composites were fabricated using a modified tape casting method for enhanced alignment of the whisker seeds. The relative densities of all four samples reached 99% at room temperature. The three-point flexural strengths of the samples according to the stacking sequences were measured at both room temperature and 1723 K. The high temperature strength of sample WWW was $457{\pm}14$ MPa. The fracture of sample WWW occurred mainly along the grain boundary. The room temperature strengths of samples OOO, OWO, WOW, and WWW were $430{\pm}32$ MPa, $470{\pm}19$ MPa, $700{\pm}14$MPa, and $940{\pm}14$ MPa, respectively.

TiB$_2$-Fe 서메트의 소결성 및 기계적성질에 미치는 Mo첨가의 영향 (Effect of Mo Addition on the Sinterability and Mechanical Properties of TiB$_2$-Fe Cermets)

  • 최덕순
    • 한국세라믹학회지
    • /
    • 제36권5호
    • /
    • pp.471-477
    • /
    • 1999
  • Fe and Fe-Mo binder were used to produce TiB2 based cermet by a pressureless sintering. The densification behaviour of TiB2-Fe-Mo cermet during liquid-phase sintering in argon was studied in relation to binder phase charactertics. The effects of Mo addition and sintering condition on the sintering behaviour and mechanical properties were also investigated. TiB2-based cermets with Fe-Mo binder composition showed a better sinterability than the cermets with only Fe binder. In TiB2-Fe-Mo cermet higher densities in the wide temperature range were obtained and also fully densified sintered cermet were obtained at 1873K The enhancement in the densification phenomenon of TiB2-Fe-Mo system can be explained by improved liquid phase wettability associated with the roles of Mo components as solute atoms. When Fe-Mo binders were used cermets with a finer grain size and enhanced mechanical properties wereproduced and new phases such as Fe2B and Mo2FeB2 were observed in the sintered cermet. The highest bending strength was obtained from the 20vol% Fe-Mo cermet and these hardness-fracture toughness combination in the wide binder compositions is better than that of TiB2-Fe cermet. In order to improve mechanical properties microstructure control with high purity powders is desirable because high purity powders prevent the formation of Fe2B and Mo2FeB2 phase which comsume the ductile binder phase.

  • PDF

Effect of Alumina Coating on Mechanical Properties of SiC Whisker Reinforced Silicon Nitrate Ceramic Composite

  • Lee, Ki-Ju;Xu, Jing-Wen;Hwang, Woon-Suk;Cho, Won-Seung
    • Corrosion Science and Technology
    • /
    • 제6권1호
    • /
    • pp.24-28
    • /
    • 2007
  • Alumina coated SiC whiskers were prepared by homogeneous precipitation of aluminum sulfate. The Si3N4 composites reinforced with coated SiC whiskers were fabricated by hot-pressing at $1800^{\circ}C$ for 2 h under an $N_{2}$ atmosphere of 0.1 MPa to examine the effects of coated whiskers on the mechanical properties of SiC whisker reinforced $Si_{3}N_{4}$ composite. By the addition of alumina coated SiC whiskers instead of as received ones, the fracture toughness of composite was about 6.7 $MPam^{1/2}$ which was slightly lower than as received SiC whisker reinforced composite. This result seems to be caused by the fact that the crack deflection and whisker pull-out were decreased. Thus, alumina coated SiC whiskers were considered to form relatively strong interface bond with $Si_{3}N_{4}$ matrix.

Modeling mesoscale uncertainty for concrete in tension

  • Tregger, Nathan;Corr, David;Graham-Brady, Lori;Shah, Surendra
    • Computers and Concrete
    • /
    • 제4권5호
    • /
    • pp.347-362
    • /
    • 2007
  • Due to heterogeneities at all scales, concrete exhibits significant variability in mechanical behavior from sample to sample. An understanding of the fundamental mechanical performance of concrete must therefore be embedded in a stochastic framework. The current work attempts to address the connection between a two-dimensional concrete mesostructure and the random local material properties associated within that mesostructure. This work builds on previous work that has focused on the random configuration of concrete mesostructures. This was accomplished by developing an understanding of the effects of variations in the mortar strength and the mortar-aggregate interfacial strength in given deterministic mesostructural configurations. The results are assessed through direct tension tests that are validated by comparing experimental results of two different, pre-arranged mesostructures, with the intent of isolating the effect of local variations in strength. Agreement is shown both in mechanical property values as well as the qualitative nature of crack initiation and propagation.