• Title/Summary/Keyword: Fracture model

Search Result 1,293, Processing Time 0.028 seconds

Energy Dissipation Capacity of the T-stub Fastened by SMA bars (SMA 강봉으로 체결된 T-stub의 에너지소산능력)

  • Yang, Jae Guen;Baek, Min Chang;Lee, Jae Yun;Lee, Hyung Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.231-240
    • /
    • 2014
  • The T-stub subjected to an axial tensile force shows various behavior characteristics according to the changes in the diameter and tightening force of the fastener, the geometric shape of the T-stub, and the material properties of the T-stub and fastener. Due to the influence of these changes, the T-stub shows three failure modes: plastic failure after the flexural yielding of the T-stub flange, flexural yielding of the T-stub fillet, and fracture of the fastener. In general, a T-stub with a thin flange and where the gauge distance of the fastener is long has a larger energy dissipation capacity than a T-stub with a thick flange and where the gauge distance of the fastener is short, due to the plastic deformation after flexural yielding. In this study, three-dimensional nonlinear finite element analysis was carried out to determine the effect of the fastener used for fastening the T-stub on the energy dissipation capacity of the T-stub. For the fastener of the T-stub analysis model, F10T-M20 high-tension bolts and ${\varnothing}19.05-mm$ (3/4-inch) SMA bars were modeled, and the geometric shape of the T-stub was selected to represent the flexural yielding of the T-stub fillet and the axial tensile failure of the fastener.

Advanced airway management for the prehospital traumatic patient (병원 전 환경의 외상성 응급환자를 위한 전문기도관리)

  • Shim, Gyu-Sik;Kim, Eun-Mee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2360-2367
    • /
    • 2013
  • The purpose of this study was to improve the paramedics skills to manage advanced airway by comparing speed and success rate between endotracheal intubation and laryngeal mask airway(LMA) insertion in a moving ambulance. Sixty subjects were randomly recruited and samely divided into control group and experimental group. And they were asked to join a practical experiment using dummy model. Data analysis was done by SPSS WIN 14.0 Version. As a result of this research, in terms of difference in speed according to patient's intubation posture, the speed of control group was indicated to be good in sniffing position(t=-4.038, p<.001). There was no difference in speed between two groups in neutral position. In the neutral posture given the endotracheal intubation, tooth fracture occurred in 16 people(53.3%). There was no difference in success rate between two groups. As for a change in self-confidence before and after experiment, the post self-confidence was indicated to have been enhanced in both groups. In conclusion, it is effective to use LMA in the traumatic patient who is unable to receive endotracheal intubation in sniffing position. It is very important for the paramedics to receive the continuous training of the airway management skills.

A study on nonlinear crash analysis of railway tankcar according to the overseas crashworthiness regulations (해외 충돌안전규정에 따른 유류탱크화차의 비선형충돌해석 연구)

  • Son, Seung Wan;Jung, Hyun Seung;Ahn, Seung Ho;Kim, Jin Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.843-850
    • /
    • 2020
  • The purpose of this study is to evaluate the structural risk and weakness of a railway tank car through nonlinear collision analysis according to overseas collision safety standards. The goal is to propose a crash safety design guideline for railway tank cars for transporting dangerous goods in Korea. We analyzed the buffer impact test procedure of railway freight cars prescribed in EN 12663-2 and the tank puncture test criteria prescribed in 49CFR179. A nonlinear finite element model according to each standard was modeled using LS-DYNA, a commercial finite element analysis solver. As a result of the buffing impact test simulation, it was predicted that plastic deformation would not occur at a collision speed of 6 km/h or less. However, plastic deformation was detected at the rear of the center sill and at the tank center supporting the structure at a collision speed of 8 km/h or more. As a result of a head-on test simulation of tank puncture, the outer tank shell was destroyed at the corner of the tank head when 4% of the kinetic energy of the impacter was absorbed. The tank shell was destroyed in the area of contact with the impacter in the test mode analysis of tank shell puncture when the kinetic energy of the moving vehicle was reduced by 30%. Therefore, the simulation results of the puncture test show that fracture at the tank shell and leakage of the internal material is expected. Consequently, protection and structural design reinforcement are required on railway tank cars in Korea.

EFFECTS Of VARIOUS SILANE COUPLING AGENTS ON THE STRENGTH AND THE SURFACE ROUGHNESS OF GLASS FIBER-ADDED PMMA RESIN (수종의 실란처리 유리섬유를 첨가한 의치상용 레진의 강도변화 및 마모전.후 표면성상분석)

  • Lee, Sang-Il;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo;Yun, Suk-Dae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.457-468
    • /
    • 2007
  • Statements of problem: The fracture of acrylic resin dentures remains an unsolved problem. Therefore, many investigations have been performed and various approaches to strengthening acrylic resin, for example, the reinforcement of heat-cured acrylic resin using glass fibers, have been suggested over the years. Silane is important for bonding between glass fiber and resin. Purpose: The aim of the present study was to investigate the effect of various silane on the strength of PMMA resin and roughness of resin-glass fiber complex after abrasion test. Material and methods: 3mm glass fiber (Chopped strand, Hankuk fiber Co., Milyang, Korea) was treated with 3 kinds of silane (MPS, EPS, APS) (Sila-ace, Chisso chemical, Tokyo, Japan) and mixed with PMMA resin(Vertex RS, Vertex Dental B.V., Zeist, Netherlands). Transverse strength and Young's modulus was measured using Instron (Instron model 4466, Instron, Massachusetts, USA). After abrasion test (The 858 Mini Bionix II Test System, MTS System Co., Minnesota, USA) surface roughness was evaluated using tester (Form Talysurf plus, Taylor Hopson Ltd., Leicester England). Examination of scanning electron microscope was also performed. Results: Within this study, the following conclusions were drawn. 1. Surface treatment of glass fiber with MPS and APS increased transverse strength of PMMA resin complex, but surface treatment with EPS decreased transverse strength of PMMA resin complex (p<0.05). 2. Silane treated glass fiber increased Young's modulus of PMMA resin complex compared to desized glass fiber (p<0.05). 3. Roughness increased after abrasion test in case of PMMA resin reinforced with desized glass fiber (p<0.05). 4. Roughness change was not observed after abrasion test in case of PMMA resin reinforced with silane treated glass fiber (p>0.05).

The effect of low temperature aging on the mechanical property & phase stability of Y-TZP ceramics

  • Kim, Hyung-Tae;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.3
    • /
    • pp.113-117
    • /
    • 2009
  • STATEMENT OF PROBLEM. Recently Yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) has been introduced due to superior flexural strength and fracture toughness compared to other dental ceramic systems. Although zirconia has outstanding mechanical properties, the phenomenon of decrease in the life-time of zirconia resulted from degradation in flexural strength after low temperature aging has been reported. PURPOSE. The objective of this study was to investigate degradation of flexural strength of Y-TZP ceramics after various low temperature aging treatments and to evaluate the phase stability and micro-structural change after aging by using X-ray diffraction analysis and a scanning electron microscope (SEM). MATERIAL AND METHODS. Y-TZP blocks of Vita In-Ceram YZ (Vita Zahnfabrik, Bad $S\ddot{a}ckingen$, Germany) were prepared in 40 mm (length) $\times$ 4 mm (width) $\times$ 3 mm (height) samples. Specimens were artificially aged in distilled water by heat-treatment at a temperature of 75, 100, 125, 150, 175, 200, and $225^{\circ}C$ for 10 hours, in order to induce the phase transformation at the surface. To measure the mechanical property, the specimens were subjected to a four-point bending test using a universal testing machine (Instron model 3365; Instron, Canton, Mass, USA). In addition, X-ray diffraction analysis (DMAX 2500; Rigaku, Tokyo, Japan) and SEM (Hitachi s4700; Jeol Ltd, Tokyo, Japan) were performed to estimate the phase transformation. The statistical analysis was done using SAS 9.1.3 (SAS institute, USA). The flexural strength data of the experimental groups were analyzed by one-way analysis of variance and to detect statistically significant differences ($\alpha$= .05). RESULTS. The mean flexural strength of sintered Vita In-Ceram YZ without autoclaving was 798 MPa. When applied aging temperature at below $125^{\circ}C$ for 10 hours, the flexural strength of Vita In-Ceram YZ increased up to 1,161 MPa. However, at above $150^{\circ}C$, the flexural strength started to decrease. Although low temperature aging caused the tetragonal-to-monoclinic phase transformation related to temperature, the minimum flexural strength was above 700 MPa. CONCLUSION. The monoclinic phase started to appear after aging treatment above $100^{\circ}C$. With the higher aging temperature, the fraction of monoclinic phase increased. The ratio of monoclinic/tetragonal + monoclinic phase reached a plateau value, circa 75% above $175^{\circ}C$. The point of monoclinic concentration at which the flexural strength begins to decrease was between 12% and 54%.

Temperature-Dependency Thermal Properties and Transient Thermal Analysis of Structural Frames Exposed to Fire (온도의존성 열특성 계수를 고려한 화재에 노출된 철근콘크리트 골조의 해석적 연구)

  • Han, Byung-Chan;Kwon, Young-Jin;Kim, Jae-Hwan;Shin, Yeong-Soo;Choi, Eun-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.283-292
    • /
    • 2007
  • A research projects is currently being conducted to develop a nonlinear finite element analysis methods for predicting the structural behavior of reinforced concrete frame structures, exposed to fire. As part of this, reinforced concrete frames subjected to fire loads were analyzed using the nonlinear finite-element program DIANA. Two numerical steps are incorporated in this program. The first step carries out the nonlinear transient heat flow analysis associated with fire and the second step predicts the structural behavior of reinforced concrete frames subjected to the thermal histories predicted by first step. The complex features of structural behavior in fire conditions, such as thermal expansion, plasticity, cracking or crushing, and material properties changing with temperature are considered. A concrete material model based on nonlinear fracture mechanics to take cracking into account and plasticity models for concrete in compression and reinforcement steel were used. The material and analytical models developed in this paper are verified against the experimental data on simple reinforced concrete beams. The changes in thermal parameters are discussed from the point of view of changes of structure and chemical composition due to the high temperature exposure. Although, this study considers codes standard fire for reinforced concrete frame, any other time-temperature relationship can be easily incorporated.

Effect of the Member Joint on Structural Performance of an Arch-type Multi-span Greenhouse: A Full-scale Experimental and Numerical Study (부재 접합부가 아치형 연동온실의 구조 성능에 미치는 영향: 실대형 실험적 및 해석적 연구)

  • Choi, Man-kwon;Ryu, Hee-ryong;Cho, Myeong-whan;Yu, In-ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.402-410
    • /
    • 2017
  • The effect of the steel pipe member joint on the design performance of a plastic multi-span greenhouse was analysed through the comparing full-scale experiment and numerical analysis. The design performance of the greenhouse is generally evaluated through numerical analysis, but it is rare to consider the characteristics of the connections or joints of the members. In this study, the effect of the column-gutter beam-rafter-wind break wall joint on the design performance of the whole structure of a plastic multi-span greenhouse was analysed. The numerical results with assuming that the member joint are rigid condition were compared with the full-scale load test results using member joints used in the field. The stiffness of the entire structure was compared using the load-displacement relationship and the change of the load sharing ratio that the main members such as column, rafters, and wind break wall was analysed. The results of the load test were about 40% larger than the numerical result and the member stress was more than twice as large as those of the loaded columns. In order to increase the reliability of the design performance of the greenhouse, it is necessary to develop a numerical analysis model which can consider the characteristics of various joints.

Instrumented Indentation Technique: New Nondestructive Measurement Technique for Flow Stress-Strain and Residual Stress of Metallic Materials (계장화 압입시험: 금속재료의 유동 응력-변형률과 잔류응력 평가를 위한 신 비파괴 측정 기술)

  • Lee, Kyung-Woo;Choi, Min-Jae;Kim, Ju-Young;Kim, Kwang-Ho;Kwon, Dong-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.306-314
    • /
    • 2006
  • Instrumented indentation technique is a new way to evaluate nondestructive such mechanical properties as flow properties, residual stress and fracture toughness by analyzing indentation load-depth curves. This study evaluated quantitatively the flow properties of steels and residual stress of weldments. First, flow properties can be evaluated by defining a representative stress and strain from analysis of deformation behavior beneath the rigid spherical indenter and the parameters obtained from instrumented indentation tests. For estimating residual stress, the deviatoric-stress part of the residual stress affects the indentation load-depth curve, so that by analyzing the difference between the residual-stress-induced indentation curve and residual-stress-free curve, the quantitative residual stress of the target region can be evaluated. The algorithm for flow property evaluation was verified by comparison with uniaxial tensile test and the residual stress evaluation model was compared to mechanical cutting and ED-XRD results.

Development of a roller supported piston type loading platen reducing the frictional restraint along the interfaces between the specimen and platens under the biaxial loading condition (이축압축 조건에서 실험체/재하판 경계면상의 마찰저항 감소를 위한 롤러 지지된 피스톤 형태의 하중재하판의 개발)

  • SaGong, Myung;Kim, Se-Chyul;Lee, J.S.;Park, Du-Hee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.303-312
    • /
    • 2008
  • Multi-axial compression tests have been frequently adopted for the evaluation of material properties of rock cores and rock fracture model tests. Special care has to be applied on the boundary condition between the specimen and loading platen to draw the precise test results of the multi-axial compression tests. With the use of dry steel platen, the stress rotation will occur, due to the frictional restraint from the boundary between the specimen and loading platen. The restraint will deviate the expected test results under the conditions of the given external pressures. Various methods have been applied to reduce the side restraint along the specimen/loading platen interface. The steel brush type loading platen is one example of the attempts. In this paper, a new type of loading platen is introduced to overcome the limitation caused by the use of the brush type loading platen, which requires some internal space for the installation of the brushes. The new type of loading platen, roller supported steel piston type loading platen. is constituted of shot steel pistons which have sufficient stiffness to deliver the external pressure and the shaft type roller installed at the rear of the pistons. The pistons are designed to follow the local deformation of the specimens. In this paper, structural details of the loading platen are presented and frictional and biaxial compression tests results are shown to verify the required functions of the loading platen. Furthermore, calibration process is followed by a comparison between the test results and numerical analyses.

  • PDF

Magnetic Investigation of the Yangsan Fault (양산 단층에 대한 자력탐사 연구)

  • Kwon, Byung-Doo;Lee, Ki-Won
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.421-434
    • /
    • 1991
  • Ground magnetic surveys were conducted at four areas where the Yangsan fault, the most prominent lineament in the Kyeongsang basin, appears to be passed through. For data processing, IGRF correction, upward continuation and reduction-to-the-pole were performed. The automatic inversion by using a matrix computation method, which takes the depth to bottom layer of the horizontal two layer structure as the model parameter, has been attempted to delineate the subsurface structure. Upward continuation of the surface magnetic map to the same level of the aeromagnetic survey (KIER, 1989) resulted in very similiar patterns to those of aeromagnetic data. Subsurface modeling of eight profile data show that the strike and dip of the Yangsan fault in study areas are $N6^{\circ}-15^{\circ}E$, and near vertical to somewhat eastward, repectively, despite of the local lithological contrast of each study area. It seems that the magnetic effect of faulting in the study area 1, which locates in the most northern part of the survey areas, is disturbed by that of igneous intrusion. At study area 2, the possibility of volcanic or igneous intrusion, which is 200-300 meters wide along the fault plane was presented. At study area 3, unlike other study areas, distinct fracture zone of 500-700 meters in width was revealed along the surface fault line. The andesitic rocks of the study area 4 have very high susceptibilities and the fault line on surface of this area was shifted about 500 meter eastward, as compared with the inferred fault line by the previous study.

  • PDF