• Title/Summary/Keyword: Fracture Test

Search Result 2,783, Processing Time 0.026 seconds

Evaluation of the Fracture Toughness Transition Characteristics of RPV Steels Based on the ASTM Master Curve Method Using Small Specimens (소형시험편의 Master Curve 방법을 이용한 원자로 압력용기강의 파괴인성 천이특성평가)

  • Yang, Won-Jon;Heo, Mu-Yeong;Kim, Ju-Hak;Lee, Bong-Sang;Hong, Jun-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.303-310
    • /
    • 2000
  • Fracture toughness of five different reactor pressure vessel steels was characterized in the transition temperature region by the ASTM E1921-97 standard method using Charpy-sized small specimens. T he predominant fracture mode of the tested steels was transgranular cleavage in the test conditions. A statistical analysis based on the Weibull distribution was applied to the interpretation of the scattered fracture toughness data. The size-dependence of the measured fracture toughness values was also well predicted by means of the Weibull probabilistic analysis. The measured fracture toughness transition curves followed the temperature-dependence of the ASTM master curve within the expected scatter bands. Therefore, the fracture toughness characteristics in the transition region could be described by a single parameter, so-called the reference temperature (T。), for a given steel. The determined reference temperatures of the tested materials could not be correlated with the conventional index temperatures from Charpy impact tests.

Mode II fracture toughness determination of rocks using short beam compression test (짧은 보 압축 시험법을 이용한 암석의 모드 II 파괴 인성 측정)

  • Ko, Tae Young;Kemeny, J.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.547-557
    • /
    • 2013
  • The mode II fracture toughness and strength due to shear stress are important parameters in the stability of caprock and injection zone with application to geological sequestration of carbon dioxide. In this research, a short beam compression test has been used to determine the shear strength and the mode II fracture toughness for Coconino sandstone. The average value of the shear strength and mode II fracture toughness are estimated to be 23.53 MPa and 1.58 MPa${\surd}$m respectively. The stress intensity factor is suggested by finite element analysis using the displacement extrapolation method. The effect of biaxial stress and water saturation on the fracture toughness has also been investigated. The fracture toughness increases with confining stresses, but decreases by 11.4% in fully saturated condition.

Effect of ferrule on the fracture resistance of mandibular premolars with prefabricated posts and cores

  • Kim, Ae-Ra;Lim, Hyun-Pil;Yang, Hong-So;Park, Sang-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.328-334
    • /
    • 2017
  • PURPOSE. This study evaluated fracture resistance with regard to ferrule lengths and post reinforcement on endodontically treated mandibular premolars incorporating a prefabricated post and resin core. MATERIALS AND METHODS. One hundred extracted mandibular premolars were randomly divided into 5 groups (n=20): intact teeth (NR); endodontically treated teeth (ETT) without post (NP); ETT restored with a prefabricated post with ferrule lengths of either 0 mm (F0), 1 mm (F1), or 2 mm (F2). Prepared teeth were restored with metal crowns. A thermal cycling test was performed for 1,000 cycles. Loading was applied at an angle of 135 degrees to the axis of the tooth using a universal testing machine with a crosshead speed of 2.54 mm/min. Fracture loads were analyzed by one-way ANOVA and Tukey HSD test using a statistical program (${\alpha}=.05$). RESULTS. There were statistical differences in fracture loads among groups (P<.001). The fracture load of F2 ($237.7{\pm}83.4$) was significantly higher than those of NP ($155.6{\pm}74.3N$), F0 ($98.8{\pm}43.3N$), and F1 ($152.8{\pm}78.5N$) (P=.011, P<.001, and P=.008, respectively). CONCLUSION. Fracture resistance of ETT depends on the length of the ferrule, as shown by the significantly increased fracture resistance in the 2 mm ferrule group (F2) compared to the groups with shorter ferrule lengths (F0, F1) and without post (NP).

Fracture Behavior of a Stacked Concrete Structure Based on the Fracture Mechanics (적층한 콘크리트 복합구조체의 파괴역학적 거동)

  • Kim, Sang-Chul;Kim, Yeon-Tae
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.119-127
    • /
    • 1999
  • The objective of this study is to simulate the fracture behavior of composite structure bonded with more than 2 different cementitious materials. For this, concrete and cement were stacked and bonded in a direction perpendicular to loading and specimens were tested. Each constituent material of concrete and cement was fabricated independently also, and three point bending and indirect tensile tests were carried out for the acquisition of measured values applicable to the proposed model. As a result of comparing theoretical results and experimental ones, it was found that the proposed model derived from fictitious crack theory can be used to predict the fracture behavior of composite structures on the vases of well agreement with experimental results. It was also noted that the degree of improvement of fracture energies and strengths is greatly dependent on the stacking sequence of layers composing of a composite structure. Thus, it can be concluded that brittleness or ductility of a composite structure can be accomplished by a proper arrangement of layers on one's purpose throughout the proposed analysis.

Effect of core design on fracture resistance of zirconia-lithium disilicate anterior bilayered crowns

  • Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra;Huh, Yoon-Hyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.181-188
    • /
    • 2020
  • PURPOSE. The effect of core design on the fracture resistance of zirconia-lithium disilicate (LS2) bilayered crowns for anterior teeth is evaluated by comparing with that of metal-ceramic crowns. MATERIALS AND METHODS. Forty customized titanium abutments for maxillary central incisor were prepared. Each group of 10 units was constructed using the same veneer form of designs A and B, which covered labial surface to approximately one third of the incisal and cervical palatal surface, respectively. LS2 pressed-on-zirconia (POZ) and porcelain-fused-to-metal (PFM) crowns were divided into "POZ_A," "POZ_B," "PFM_A," and "PFM_B" groups, and 6000 thermal cycles (5/55 ℃) were performed after 24 h storage in distilled water at 37 ℃. All specimens were prepared using a single type of self-adhesive resin cement. The fracture resistance was measured using a universal testing machine. Failure mode and elemental analyses of the bonding interface were performed. The data were analyzed using Welch's t-test and the Games-Howell exact test. RESULTS. The PFM_B (1376. 8 ± 93.3 N) group demonstrated significantly higher fracture strength than the PFM_A (915.8 ± 206.3 N) and POZ_B (963.8 ± 316.2 N) groups (P<.05). There was no statistically significant difference in fracture resistance between the POZ_A (1184.4 ± 319.6 N) and POZ_B groups (P>.05). Regardless of the design differences of the zirconia cores, fractures involving cores occurred in all specimens of the POZ groups. CONCLUSION. The bilayered anterior POZ crowns showed different fracture resistance and fracture pattern according to the core design compared to PFM.

Analysis of notch depth and loading rate effects on crack growth in concrete by FE and DIC

  • Zhu, Xiangyi;Chen, Xudong;Lu, Jun;Fan, Xiangqian
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.527-539
    • /
    • 2019
  • In this paper, the fracture characteristics of concrete specimens with different notch depths under three-point flexural loads are studied by finite element and fracture mechanics methods. Firstly, the concrete beams (the size is 700×100×150 mm) with different notch depths (a=30 mm, 45 mm, 60 mm and 75 mm respectively) are tested to study the influence of notch depths on the mechanical properties of concrete. Subsequently, the concrete beams with notch depth of 60 mm are loaded at different loading rates to study the influence of loading rates on the fracture characteristics, and digital image correlation (DIC) is used to monitor the strain nephogram at different loading rates. The test results show that the flexural characteristics of the beams are influenced by notch depths, and the bearing capacity and ductility of the concrete decrease with the increase of notch depths. Moreover, the peak load of concrete beam gradually increases with the increase of loading rate. Then, the fracture energy of the beams is accurately calculated by tail-modeling method and the bilinear softening constitutive model of fracture behavior is determined by using the modified fracture energy. Finally, the bilinear softening constitutive function is embedded into the finite element (FE) model for numerical simulation. Through the comparison of the test results and finite element analysis, the bilinear softening model determined by the tail-modeling method can be used to predict the fracture behavior of concrete beams under different notch depths and loading rates.

The Effect of Paint Baking on the Strength and Failure of Spot Welds for Advanced High Strength Steels (고강도 강판 저항 점용접부 강도 및 파단에 미치는 Paint Baking의 영향)

  • Choi, Chul Young;Lee, Dongyun;Kim, In-Bae;Kim, Yangdo;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.967-976
    • /
    • 2011
  • Conventional fracture tests of resistance spot welds have been performed without consideration of the paint baking process in the automobile manufacturing line. The aim of this paper is to investigate the effect of the paint baking process on load carrying capacity and fracture mode for resistance spot welded 590 dual phase (DP), 780DP, 980DP, 590 transformation in duced plasticity (TRIP), 780TRIP and 1180 complex phase (CP) steels. With paint baking after resistance spot welding, the l-shape tensile test (LTT) and nano-indentation test were conducted on the as-welded and paint baked samples. Paint baking increased the load-carrying capacity of the resistance spot welded samples and improved the fracture appearance from partial interfacial fracture (PIF) to button fracture (BF). Improvement in fracture appearance after LTT is observed on weldments of 780 MPa grade TRIP steels, especially in the low welding current range with paint baking conditions. The higher carbon contents (or carbon equivalent) are attributed to the low weldability of the resistance spot welding of high strength steels. Improvement of the fracture mode and load carrying ability has been achieved with ferrite hardening and carbide formation during the paint baking process. The average nano-indentation hardness profile for each weld zone shows hardening of the base metal and softening of the heat affected zone (HAZ) and the weld metal, which proves that microstructural changes occur during low temperature heat treatment.

Evaluation of Resistance Spot Weld Interfacial Fractures in Tensile-Shear Tests of TRIP 590 Steels (저항 점 용접된 TRIP590강의 계면파단특성에 관한 평가)

  • Park, Sang-Soon;Lee, Sang-Min;Cho, Yongjoon;Kang, Nam-Hyun;Yu, Ji-Hun;Kim, Young-Seok;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.672-682
    • /
    • 2008
  • The resistance spot welding of TRIP590 steels was investigated to enhance understanding of weld fracture during tensile-shear strength (TSS) test. The main failure modes for spot welds of TRIP590 steels were nugget pullout and interfacial fracture. The peak load to cause a weld interfacial failure was found to be related to fracture toughness of the weld and the weld diameter. Although interfacial fracture occurred in the samples, the load carrying capacity of the weld was high and not significantly affected by the fracture mode. Substantial part of the weld exhibits the characteristic dimple (or elongated dimple) fractures on interfacial fractured surface, in spite of the high hardness values associated with the martensite microstructures. The high load-bearing ability of the weld is directly associated with the area of ductile fracture occurred in weld. Therefore, the judgment of the quality of resistance spot welds in TRIP590 steels, the load carrying capacity of the weld should be considered as an important factor than fracture mode.

INFLUENCE OF THICKNESS OF EMPRESS 2 CERAMIC ON FRACTURE STRENGTH (Empress 2 도재의 두께에 따른 파절강도에 관한 연구)

  • Koh, Jung-Woo;Yang, Jae-Ho;Lee, Sun-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.446-460
    • /
    • 2000
  • All-ceramic restorations have had a more limited life expectancy than metal ceramic crowns be-cause of their lower strength. The relatively lower strength has limited the use of all-ceramic crowns to the areas where occlusal loads are lower Therefore many researches have been done to increase the strength of all-ceramic crowns. IPS Empress 2 is a new type of lithium disilicate glass-ceramic with enhanced physical characteristics which has been in use clinically since 1998. Previous researches reported that the flexural strength of all-ceramic material was greater than 300 MPa, and all-ceramic crowns can be used in staining or layering technique. The objective of this study was to investigate the influence of the thickness of IPS Empress 2 ceramic on fracture strength. Both staining technique and layering technique was investigated. Vita VMK was used as control. For all three groups, five specimens each of 0.8mm, 1.0mm, 1.4mm, 1.8mm, and 2.2mm thick-ness (a total of 75 specimens) were prepared. Control group : Vita VMK Porcelain specimens were prepared with dentine ceramic and liquid glazing was done. Group I : IPS Empress 2 were prepared with staining technique and stained twice and glazed once. Group II : IPS Empress 2 were prepared with layering technique and glazed after wash firing. The thickness and diameter of the specimen were measured and controlled after specimen preparation. Biaxial Flexure Test (ASTM Standard F394-78) was adopted as this test method produces results least affected by the edge condition of the specimens. Fracture strength was measured with Instron Universal Testing Machine. Conclusions are as follow : 1. The fracture strength was increase in order of control group, test group I, test group II. 2. Fracture strength of the group I (Empress 2 Staining) was 65.54 N in 0.8mm, 155.2 N in 1.0mm, 233.5 N in 1.4mm, 434.5 N in 1.8mm, and 600.1 N in 2.2mm. 3. Fracture strength of the group II (Empress 2 Layering) was 190.0 N in 0.8mm, 283.5 N in 1.0mm. 437.2 N in 1.4mm, 732.0 N in 1.8mm, and 1115.0 N in 2.2mm. 4. No statistical difference was found in flexural strengths according to thickness in a specified group(p>0.05).

  • PDF

Correlationship Between Degree of Displacement and Range of Motion of the Subtalar joint after Calcaneal fracture (종골 골절 후 거골하 관절면의 전위 정도와 운동 범위의 상관 관계)

  • Park, In-Heon;Lee, Kee-Byung;Song, Kyung-Won;Lee, Jin-Young;Lee, Eung-Joo;Park, Rae-Seong
    • Journal of Korean Foot and Ankle Society
    • /
    • v.2 no.1
    • /
    • pp.19-29
    • /
    • 1998
  • The characteristics of the patients after the calcaneal fracture that were associated with an unsatisfactory outcome were subtalar incongruity, decreased Bohler angle ratio of the fractured to the normal side, an age of more than fifty years, work involving strenuous labor, and increased time missed from work due to the injury. The purpose of this study was to examine the reliability of measurements of the range of motion of the subtalar joint. To determine reliability, evaluates of the correlatioinship between the degree of the displacement of the subtalar joint and Circle draw test after the calcaneal fracture. Fifty patients who had had fifty five calcaneal fractures were managed with open reduction and internal fixation. The results were reviewed retrospectively, between 4months and three years after the operation, with use of an evaluation system for the subtalar joint and with plain radiographs. At follow up evaluation, the result was assessed on the basis of restoration of anatomy and function of the subtalar joint. We evaluated the subtalar joint with plain films that consist of anteroposterior projection, lateral projection, calcaneal axial view, and Broden's view, and the measurements of the displacement of the subtalar joint surface after the calcaneal fracture. And we evaluated the range of motion of the subtalar joint with Circle draw test for physical evaluation. Circle draw test was evaluated and demonstrated the motion of flexion-supination-adduction and extension-pronation-abduction of the subtalar joint. And there are correlationship between the degree of the displacement and range of motion of the subtalar joint after the calcaneal fracture. The report critically reviews methords used to measure Circle draw test for physical examination of the follow up after the calcaneal fracture.

  • PDF