• Title/Summary/Keyword: Fracture Opening Deformation

Search Result 23, Processing Time 0.029 seconds

Determination of CTOD & CTOA Curve for Structural Steel Hot-Rolled Thin Plates (일반 구조용강 열간압연 박판에 대한 CTOD와 CTOA 곡선 결정)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.729-732
    • /
    • 2003
  • The K-R design curve is an engineering method of linear-elastic fracture analysis under plane-stress loading conditions. By the way, linear-elastic fracture mechanics (LEFM) is valid only as long as nonlinear material deformation is confined to a small region surrounding the crack tip. Like general steels, it is virtually impossible to characterize the fracture behavior with LEFM, in many materials. Critical values of J contour integral or crack tip opening displacement (CTOD) give nearly size independent measures of fracture toughness, even for relatively large amounts of crack tip plasticity. Furthermore, the crack tip opening displacement is the only parameter that can be directly measured in the fracture test. On the other. the crack tip opening angle (CTOA) test is similar to CTOD experimentally. Moreover, the test is easier to measure the fracture toughness than other method. The shape of the CTOA curve depends on material fracture behavior and, on the opening configuration of the cracked structure. CTOA parameter describes crack tip conditions in elastic-plastic materials, and it can be used as a fracture criterion effectively. In this paper, CTOA test is performed for steel JS-SS400 hot-rolled thin plates under plane-stress loading conditions. Special experimental apparatuses are used to prevent specimens from buckling and to measure crack tip opening angle for thin compact tension (CT) specimens.

  • PDF

Study on the Fracture Deformation Characteristics in Rock by Hydraulic Fracturing (수압파쇄에 의한 암반 균열의 변형 특성 연구)

  • Sim, Young-Jong;Kim, Hong-Taek;Germanovich, Leonid N.
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.2
    • /
    • pp.43-53
    • /
    • 2006
  • Hydraulic fracturing is an important and abundant process in both industrial applications and natural environments. The formation of hydraulic fractures includes nucleation, growth, and termination in numerous rock types and stress regimes, at scales ranging from microns to many kilometers. As a result, fracture segmentation, commonly observed at all scales and in all geo-materials, contributes to this complexity in many ways. In particular, the mechanical interaction of fracture segments strongly affect almost all hydraulic fracturing processes. In this paper, the segmented fracture opening deformation in rock by hydraulic fracturing is quantified using boundary collocation method and is compared with non-interacting single fracture.

  • PDF

The effect of mechanical inhomogeneity in microzones of welded joints on CTOD fracture toughness of nuclear thick-walled steel

  • Long Tan;Songyang Li;Liangyin Zhao;Lulu Wang;Xiuxiu Zhao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4112-4119
    • /
    • 2023
  • This study employs the microshear test method to examine the local mechanical properties of narrow-gap welded joints, revealing the mechanical inhomogeneity by evaluating the microshear strength, stress-strain curves, and failure strain. On this basis, the influence of weld joints micromechanical inhomogeneity on the crack tip opening displacement (CTOD) fracture toughness is investigated. From the root weld layer to the cover weld layer, the fracture toughness at the center of the weld seam demonstrates an increasing trend, with the experimental and calculated CTOD values showing a good correspondence. The microproperties of the welded joints significantly impact the load-bearing capacity and fracture toughness. During the deformation process of the "low-matching" microregions, the plastic zone expansion is hindered by the surrounding microregion strength constraints, thus reducing the fracture toughness. In contrast, during the deformation of the "high-matching" microregions, the surrounding microregions absorb some of the loading energy, partially releasing the concentrated stress at the crack tip, which in turn increases the fracture toughness.

Reliability Evaluation for Hinge of Folder Devices Using ESPI

  • Kyungyoung Jhang;Minkwan Hyun;Lee, Taehun;Seokwon Chang
    • International Journal of Reliability and Applications
    • /
    • v.5 no.1
    • /
    • pp.15-24
    • /
    • 2004
  • Folder type electronic devices have hinge to support the rotational motion of folder. This hinge is stressed by the rotational inertia moment of folder at the maximum open limit position of folder. This stress is repeated whenever the folder is open, and it is a cause of hinge fracture. In this paper, the reliability evaluation for the hinge fracture in the folder type cellular phone is discussed. For this, the durability testing machine using crank-rocker mechanism is developed to evaluate the life cycle of the hinge, and the degradation after repetitions of opening and shutting is evaluated from the deformation around the hinge, where the deformation is measured by ESPI (electronic speckle pattern interferometer). Experimental results showed that ESPI was able to measure the deformation of hinge precisely, so we could monitor the change of deformation around the hinge as the repetition number of folder open is increased.

  • PDF

Study on the Evaluation of Fracture Toughness at Welded Zone for the Pipe Steel by $CO_2$ Gas Welding ($CO_2$가스 배관용접부의 파괴인성평가에 관한 연구)

  • Na, Ui-Gyun;Yu, Hyo-Seon;O, Seok-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1817-1825
    • /
    • 2000
  • The purpose of this study is to examine the fracture toughness of the welded pipe from the viewpoint of FATT for the S38 and S42 steels used widely as the pipe material. Post weld heat treatment(PW HT) was carried out like following conditions: temperature of 67$0^{\circ}C$, I hour of holding time and cooling in furnace. Fracture toughness was obtained by measuring the crack opening displacement(COD) of the notched specimens over the range of temperature from -14$0^{\circ}C$ to -$25^{\circ}C$. Hardness values at fusion line near around were the highest and the microstructures at welded zone were coarsened. Regardless of the pipe materials, COD and temperature curves of the as-welds were moved toward higher temperature compared with those of the parents. However, COD and temperature curves of the PWHT specimens were positioned at lower temperature compared with those of the as-welds. The more heat input causes to decrease the COD values at the constant temperature. It was verified through the recrystallization treatment that PWHT was attributed to move toward lower temperature region considerably due to the improved plastic deformation at the same applied COD value of 0.3mm and softening effect. In case of the weldment of S38 steel, cleavage fracture was observed at -105$^{\circ}C$ unlike the structural steels, in which brittle fracture mode was generally shown at - 196$^{\circ}C$.

Microscopic fracture criterion of crack growth initiation (연성 균열성장 개시의 미시적 파괴조건)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.740-745
    • /
    • 1987
  • For the prediction of the crack growth initiation from a blunt notch or a precrack in a prestrained material under plane strain tension and small-scale yielding conditions, a microscopic fracture criterion is proposed in terms of the crack tip opening displacement(COD) needed for the attainment of fracture strain at a microstructural distance. Smooth blunting of a crack tip with an initial root radius is assumed, and strain distributions on the crack-line axis are calculated at each deformation stage until the distributions against an original distance normalized to the COD are insensitive to an initial root radius. This case of no initial-root-radius effect is taken as for a sharp crack tip, on which the criterion is applied to determine the characteristic length of material from a critical COD for a fatigue-precracked specimen. The predicted COD at the fracture initiation from a crack with an initial root radius or a prestraining shows reasonable agreement with experimental values.

Fracture Analysis Based on the Critical-CTOA Criterion (임계 CTOA조건을 이용한 파괴해석)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2223-2233
    • /
    • 1993
  • An engineering method is suggested to calculate the applied load versus crack extension in the elastic-plastic fracture. The condition for an increment of crack extension is set by a critical increment of crack-up opening displacement(CTOD). The ratio of the CTOD increment to the incremental crack extention is a critical crack-tip opening angle(CTOA), assumed to be constant for a material of a given thickness. The Dugdale model of crack-tip deformation in an infinite plate is applied to the method, and a complete solution for crack extension and crack instability is obtained. For finite-size specimens of arbitrary geometry in general yielding, an approximate generalization of the Dugdale model is suggested so that the approximation approaches the small-scale yielding solution in a low applied load and the finite-element solution in a large applied load. Maximum load is calculated so that an applied load attains either a limit load on an unbroken ligament or a peak load during crack extension. The proposed method was applied to three-point bend specimens of a carbon steel SM45C in various sizes. Reasonable agreements are found between calculated maximum loads and experimental failure loads. Therefore, the method can be a viable alternative to the J-R curve approach in the elastic-plastic fracture analysis.

Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2) (스위스 Mont Terri 지하연구시설 단층 내 유체 주입시험 모델링: 국제공동연구 DECOVALEX-2019 Task B(Step 2))

  • Park, Jung-Wook;Guglielmi, Yves;Graupner, Bastian;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.197-213
    • /
    • 2019
  • We simulated the fault reactivation experiment conducted at 'Main Fault' intersecting the low permeability clay formations of Mont Terri Underground Research Laboratory in Switzerland using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. We formulate the hydro-mechanical coupling relation of hydraulic aperture to consider the elastic fracture opening and failure-induced dilation for reproducing the abrupt changes in injection flow rate and monitoring pressure at fracture opening pressure. A parametric study was conducted to examine the effects of in-situ stress condition and fault deformation and strength parameters and to find the optimal parameter set to reproduce the field observations. In the best matching simulation, the fracture opening pressure and variations of injection flow rate and monitoring pressure showed good agreement with field experiment results, which suggests the capability of the numerical model to reasonably capture the fracture opening and propagation process. The model overestimated the fault displacement in shear direction and the range of reactivated zone, which was attributed to the progressive shear failures along the fault at high injection pressure. In the field experiment results, however, fracture tensile opening seems the dominant mechanism affecting the hydraulic aperture increase.

Study on fracture behavior of polypropylene fiber reinforced concrete with bending beam test and digital speckle method

  • Cao, Peng;Feng, Decheng;Zhou, Changjun;Zuo, Wenxin
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.527-546
    • /
    • 2014
  • Portland cement concrete, which has higher strength and stiffness than asphalt concrete, has been widely applied on pavements. However, the brittle fracture characteristic of cement concrete restricts its application in highway pavement construction. Since the polypropylene fiber can improve the fracture toughness of cement concrete, Polypropylene Fiber-Reinforced Concrete (PFRC) is attracting more and more attention in civil engineering. In order to study the effect of polypropylene fiber on the generation and evolution process of the local deformation band in concrete, a series of three-point bending tests were performed using the new technology of the digital speckle correlation method for FRC notched beams with different volumetric contents of polypropylene fiber. The modified Double-K model was utilized for the first time to calculate the stress intensity factors of instability and crack initiation of fiber-reinforced concrete beams. The results indicate that the polypropylene fiber can enhance the fracture toughness. Based on the modified Double-K fracture theory, the maximum fracture energy of concrete with 3.2% fiber (in volume) is 47 times higher than the plain concrete. No effort of fiber content on the strength of the concrete was found. Meanwhile to balance the strength and resistant fracture toughness, concrete with 1.6% fiber is recommended to be applied in pavement construction.

Effect of Peening on Low Temperature Fatigue Strength Behavior of STABILIZER BAR in Suspension Material (현가장치 STABILIZER BAR의 저온피로강도에 미치는 쇼트피닝의 영향)

  • Jung, Jae-Wook;Park, Keyoung-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.353-358
    • /
    • 2004
  • We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{circ}C$, $-60^{circ}C$, $-80^{circ}C$, and $-100^{circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. And there is a difference between shot peened specimen and unpeened specimen. The purpose of this study is to predict the behavior of fatigue crack propagation as one of fracture mechanics on the compressive residual stress. Fatigue crack growth rate of shot peened metal was lower than that of unpeened metal. The compressive residual stress made an impact on tension and compression of the plasticity deformation in fatigue crack plasticity zone. That is. the constrained force about plasticity deformation was strengthened by resultant stress, which resulted from plasticity deformation and compressive residual stress in the process of fatigue crack propagation.

  • PDF