• Title/Summary/Keyword: Fracture Mode and Mechanism

Search Result 72, Processing Time 0.025 seconds

Study on mechanism of macro failure and micro fracture of local nearly horizontal stratum in super-large section and deep buried tunnel

  • Li, Shu-cai;Wang, Jian-hua;Chen, Wei-zhong;Li, Li-ping;Zhang, Qian-qing;He, Peng
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.253-267
    • /
    • 2016
  • The stability of surrounding rock will be poor when the tunnel is excavated through nearly horizontal stratum. In this paper, the instability mechanism of local nearly horizontal stratum in super-large section and deep buried tunnel is revealed by the analysis of the macro failure and micro fracture. A structural model is proposed to explain the mechanics of surrounding rock collapse under the action of stress redistribution and shed light on the macroscopic analytical approach of the stability of surrounding rock. Then, some highly effective formulas applied in the tunnel engineering are developed according to the theory of mixed-mode micro fracture. And well-documented field case is made to demonstrate the effectiveness and accuracy of the proposed analytical methods of mixed-mode fracture. Meanwhile, in order to make the more accurate judgment about yield failure of rock mass, a series of comprehensive failure criteria are formed. In addition, the relationship between the nonlinear failure criterion and $K_I$ and $K_{II}$ of micro fracture is established to make the surrounding rock failure criterion more comprehensive and accurate. Further, the influence of the parameters related to the tension-shear mixed-mode fracture and compression-shear mixed-mode fracture on the propagation of rock crack is analyzed. Results show that ${\sigma}_3$ changes linearly with the change of ${\sigma}_1$. And the change rate is related to ${\beta}$, angle between the cracks and ${\sigma}_1$. The proposed simple analytical approach is economical and efficient, and suitable for the analysis of local nearly horizontal stratum in super-large section and deep buried tunnel.

Effect of non-woven tissues on interlaminar fracture toughness of composite laminate (부직포가 복합적층판의 층간파괴인성에 미치는 효과)

  • 김영배;정성균;강진식;김태형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.110-114
    • /
    • 2000
  • The Interlaminar fracture behavior of hybrid composite with non-woven carbon tissue was investigated under Mode I (DCB) and Mode II (ENF) loading condition. Hybrid composites were manufactured by means of inserting a non-woven tissue between prepreg layers. Two kinds of specimens were prepared from [0]$_{24}$ and [$0_{12}/0_{12}$]. Where, the symbol "/" means that a non-woven carbon tissue was located at 0/0 mid-plane of the specimen. The interlaminar fracture toughness of hybrid composites was compared with that of CFRP. The fracture surfaces of the specimens were observed using optical microscope and SEM, and the failure mechanism was discussed. The hybrid laminates, which are made by inserting non-woven carbon tissue between layers, were shown to be effective to remarkably improve Mode II fracture toughness.toughness.

  • PDF

A Study on the Influence of Fiber Orientation on the Mode I Interlaminar Fracture Behavior of Carbon/Epoxy Composite materials (탄소섬유/에폭시 복합재료의 Mode I 층간파괴거동에 미치는 섬유배향각의 영향에 관한 연구)

  • 이택순;최영근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.391-401
    • /
    • 1995
  • Several tests of the Double Cantilever Beam(DCB) were carried out for influence of the fiber orientation on the Mode I of the interlaminar fracture behavior in the Carbon/Epoxy composites. The interlaminar fracture toughness of Mode I was estimated based on the energy release rate of Mode I, $G_{I}$. The fracture toughness at crack initiation, $G_{IC}$, increases from type A to type E. The fracture toughness, $G_{IR}$ , is almost constant macroscopically for type A and type E when crack propagates. $G_{IR}$ for types B, C, D increases rapidly at the beginning of the crack growth then it decreases gradually. The fracture surface observation by SEM was also obtained the same results. Consequently the influence of the fiber orientation on the Mode I Interlaminar fracture behavior was made clear.ear.

Assessment for Propagation Behavior and Fracture Surface of Mixed-mode Fatigue Crack by Fracture Surface-Roughness Induced Crack Closure (파면거칠기 유도 균열닫힘에 의한 혼합모드 피로균열의 전파거동 및 파면에 대한 평가)

  • Seo, Ki-Jeong;Lee, Jeong-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.432-440
    • /
    • 2007
  • In this study, we have investigated the closure behavior of fatigue cracks in SAPH440 steel plates under a mixed-mode I+II loading. A crack image capturing system as a direct measuring method was used to measure the closure levels at a crack tip. The crack closure levels in the fluctuation and stable sections were increased with the increase of the mode mixture ratio. The mode mixture ratio independent fatigue crack propagation rates equation was calculated by considering mixed-mode crack closure levels. The equation was examined according to the application method of crack opening ratio. The fracture surface analysis by C-scan method was also performed in order to investigate the closure mechanism and propagation mode of crack under the mixed-mode I+II loading. The crack closure under the mixed mode I+II is confirmed as a surface roughness closure by the quantitative analysis of fracture surface using the proposed surface roughness parameter.

Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials

  • Fakoor, Mahdi;Rafiee, Roham;Zare, Shahab
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • In this research, an efficient mixed mode I/II fracture criterion is developed for fracture investigation of orthotropic materials wherein crack is placed along the fibers. This criterion is developed based on extension of well-known Maximum Tensile Stress (MTS) criterion in conjunction with a novel material model titled as Equivalent Reinforced Isotropic Model (ERIM). In this model, orthotropic material is replaced with an isotropic matrix reinforced with fibers. A comparison between available experimental observations and theoretical estimation implies on capability of developed criterion for predicting both crack propagation direction and fracture instance, wherein the achieved fracture limit curves are also compatible with fracture mechanism of orthotic materials. It is also shown that unlike isotropic materials, fracture toughness of orthotic materials in mode $I(K)_{IC}{\mid})$ cannot be introduced as the maximum load bearing capacity and thus new fracture mechanics property, named here as maximum orthotropic fracture toughness in mode $I(K_{IC}{\mid}^{ortho}_{max})$ is defined. Optimum angle between crack and fiber direction for maximum load bearing in orthotropic materials is also defined.

Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils

  • Beylergil, Bertan;Tanoglu, Metin;Aktas, Engin
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.113-123
    • /
    • 2019
  • In this study, carbon fiber/epoxy (CF/EP) composites were interleaved with aramid nonwoven veils with an areal weight density of $8.5g/m^2$ to improve their Mode-I fracture toughness. The control and aramid interleaved CF/EP composite laminates were manufactured by VARTM in a [0]4 configuration. Tensile, three-point bending, compression, interlaminar shear, Charpy impact and Mode-I (DCB) fracture toughness values were determined to evaluate the effects of aramid nonwoven fabrics on the mechanical performance of the CF/EP composites. Thermomechanical behavior of the specimens was investigated by Dynamic Mechanical Analysis (DMA). The results showed that the propagation Mode-I fracture toughness values of CF/EP composites can be significantly improved (by about 72%) using aramid nonwoven fabrics. It was found that the main extrinsic toughening mechanism is aramid microfiber bridging acting behind the crack-tip. The incorporation of these nonwovens also increased interlaminar shear and Charpy impact strength by 10 and 16.5%, respectively. Moreover, it was revealed that the damping ability of the composites increased with the incorporation of aramid nonwoven fabrics in the interlaminar region of composites. On the other hand, they caused a reduction in in-plane mechanical properties due to the reduced carbon fiber volume fraction, increased thickness and void formation in the composites.

Fracture and Protection Technologies against Impulse of Power Arresters (전력용 피뢰기의 임펄스에 의한 파손과 대척 기술)

  • 한세원;조한구;김석수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.190-193
    • /
    • 2001
  • ZnO varistors have been widely used to protect power system and electronic system against overvoltages based on their excellent nonlinearity. In order to increase their protection capability, the fracture and protection technologies of arresters have to study according to their applications, namely ImA DC voltage, leakage currents, impulse residual voltages, withstanding capability to impulse surge, and energy absorption capability. ZnO varistors which have nonlinear current-voltage characteristic name a number of failure mechanism when ZnO elements absorb surge energies. Failure mode by thermal stress and Pin hole are among the most common failure mechanism at the high current surge current. In this study, the fracture mechaism of power arresters are introduced and protection technologies are researched. In particular the effect of thermal stress by surge currents to ZnO elements and methods against arc surge energy through withstand structure design of arrester are discussed.

  • PDF

AE Signals Characteristics from Fracture by Type of CFRP Stacking Structure (CFRP 적층 형태에 따른 파괴시 음향방출 신호특성)

  • 남기우;문창권
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.67-71
    • /
    • 2002
  • Damage process of CFRP laminates was characterized by Acoustic Emission (AE). The main objective of this study is to determine if the sources of AE in CERP laminates could be identified from the characteristics of the waveform signals recorded during monotonic tensile test. The time history and power spectrum of each individual wave signal recorded during test were examined and classified according to their special characteristics. The wave from and frequency of AE signal from a specimens is an aid to the determination of the extent of the different fracture mechanism such as matrix crack, debonding, fiber pull-out and fiber fracture as load is increased. Four distinct types of signals were observed regardless of specimen condition. The result showed that the AE method could be effectively used for analysis of fracture mechanism in CFRP laminates.

Fractographic Analysis of Ceramic Composites by Transmission Electron Microscopy using Surface Replication Technique (표면복제법을 이용한 세라믹 복합재료 파괴현상의 투과전자현미경 분석)

  • Jun, Hyeung-Woo;Kim, Gyeung-Ho;Kim, Byung-Ho
    • Applied Microscopy
    • /
    • v.26 no.4
    • /
    • pp.447-456
    • /
    • 1996
  • Fracture surfaces of materials contain useful information ranging from crack path to the mechanism of fracture. Since limitation of electron transparency requires a sample in the form of thin foil for TEM observations, it is impossible to extract such information directly from the fracture surfaces. In this study, the method of surface replication from the ceramic fracture surface is employed to characterize the process of crack propagation in ceramic matrix composites using TEM analysis. The surface replica from the fracture surface in ceramic materials provides detailed surface morphology and more importantly, loosened particles on the fracture surface are collected. Electron diffraction and chemical composition analyses of these particles reveal crack path in the specimen. Furthermore, one can determine the mode of fracture by observing the fracture surface morphology from the image of replica. Two examples are given to illustrate the potential of the surface replication technique. In the first example, apparent toughness increase in $B_{4}C-Al$ composites at high strain rate is investigated by surface replication to elucidate the mechanism of fracture at different strain rates. The polytypes of SiC formed during the sintering of SiC-AlN composite and their effect on the fracture behavior of SiC-AlN composite are analyzed in the second example.

  • PDF