• Title/Summary/Keyword: Fractional partial differential equation

Search Result 16, Processing Time 0.027 seconds

A STUDY OF A WEAK SOLUTION OF A DIFFUSION PROBLEM FOR A TEMPORAL FRACTIONAL DIFFERENTIAL EQUATION

  • Anakira, Nidal;Chebana, Zinouba;Oussaeif, Taki-Eddine;Batiha, Iqbal M.;Ouannas, Adel
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.679-689
    • /
    • 2022
  • In this paper, we establish sufficient conditions for the existence and uniqueness of solution for a class of initial boundary value problems with Dirichlet condition in regard to a category of fractional-order partial differential equations. The results are established by a method based on the theorem of Lax Milligram.

Image Denoising Based on Adaptive Fractional Order Anisotropic Diffusion

  • Yu, Jimin;Tan, Lijian;Zhou, Shangbo;Wang, Liping;Wang, Chaomei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.436-450
    • /
    • 2017
  • Recently, the method based on fractional order partial differential equation has been used in image processing. Usually, the optional order of fractional differentiation is determined by a lot of experiments. In this paper, a denoising model is proposed based on adaptive fractional order anisotropic diffusion. In the proposed model, the complexity of the local image texture is reflected by the local variance, and the order of the fractional differentiation is determined adaptively. In the process of the adaptive fractional order model, the discrete Fourier transform is applied to compute the fractional order difference as well as the dynamic evolution process. Experimental results show that the peak signal-to-noise ratio (PSNR) and structural similarity index measurement (SSIM) of the proposed image denoising algorithm is better than that of other some algorithms. The proposed algorithm not only can keep the detailed image information and edge information, but also obtain a good visual effect.

CERTAIN RESULTS INVOLVING FRACTIONAL OPERATORS AND SPECIAL FUNCTIONS

  • Aghili, Arman
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.487-503
    • /
    • 2019
  • In this study, the author provided a discussion on one dimensional Laplace and Fourier transforms with their applications. It is shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve space fractional partial differential equation with non - constant coefficients. The object of the present article is to extend the application of the joint Fourier - Laplace transform to derive an analytical solution for a variety of time fractional non - homogeneous KdV. Numerous exercises and examples presented throughout the paper.

BIFURCATION PROBLEM FOR A CLASS OF QUASILINEAR FRACTIONAL SCHRÖDINGER EQUATIONS

  • Abid, Imed
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1347-1372
    • /
    • 2020
  • We study bifurcation for the following fractional Schrödinger equation $$\{\left.\begin{eqnarray}(-{\Delta})^su+V(x)u&=&{\lambda}f(u)&&{\text{in}}\;{\Omega}\\u&>&0&&{\text{in}}\;{\Omega}\\u&=&0&&{\hspace{32}}{\text{in}}\;{\mathbb{R}}^n{\backslash}{\Omega}\end{eqnarray}\right$$ where 0 < s < 1, n > 2s, Ω is a bounded smooth domain of ℝn, (-∆)s is the fractional Laplacian of order s, V is the potential energy satisfying suitable assumptions and λ is a positive real parameter. The nonlinear term f is a positive nondecreasing convex function, asymptotically linear that is $\lim_{t{\rightarrow}+{\infty}}\;{\frac{f(t)}{t}}=a{\in}(0,+{\infty})$. We discuss the existence, uniqueness and stability of a positive solution and we also prove the existence of critical value and the uniqueness of extremal solutions. We take into account the types of Bifurcation problem for a class of quasilinear fractional Schrödinger equations, we also establish the asymptotic behavior of the solution around the bifurcation point.

AN EFFICIENT METHOD FOR SOLVING TWO-ASSET TIME FRACTIONAL BLACK-SCHOLES OPTION PRICING MODEL

  • DELPASAND, R.;HOSSEINI, M.M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.121-137
    • /
    • 2022
  • In this paper, we investigate an efficient hybrid method for solving two-asset time fractional Black-Scholes partial differential equations. The proposed method is based on the Crank-Nicolson the radial basis functions methods. We show that, this method is convergent and we obtain good approximations for solution of our problems. The numerical results show high accuracy of the proposed method without needing high computational cost.

BARRIER OPTIONS UNDER THE MFBM WITH JUMPS : APPLICATION OF THE BDF2 METHOD

  • Choi, Heungsu;Lee, Younhee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.165-171
    • /
    • 2020
  • In this paper we consider a mixed fractional Brownian motion (mfBm) with jumps. The prices of European barrier options can be evaluated by solving a partial integro-differential equation (PIDE) with variable coefficients, which is derived from the mfBm with jumps. The 2-step backward differentiation formula (BDF2 method) proposed in [6] is applied with the second-order convergence rate in the time and spatial variables. Numerical simulations are carried out to observe the convergence behaviors of the BDF2 method under the mfBm with the Kou model.