• Title/Summary/Keyword: Fractional Pel

Search Result 5, Processing Time 0.02 seconds

Efficient Integer pel and Fractional pel Motion Estimation on H.264/AVC (H.264/AVC에서 효율적인 정화소.부화소 움직임 추정)

  • Yoon, Hyo-Sun;Kim, Hye-Suk;Jung, Mi-Gyoung;Kim, Mi-Young;Cho, Young-Joo;Kim, Gi-Hong;Lee, Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.16B no.2
    • /
    • pp.123-130
    • /
    • 2009
  • Motion estimation (ME) plays an important role in digital video compression. But it limits the performance of image quality and encoding speed and is computational demanding part of the encoder. To reduce computational time and maintain the image quality, integer pel and fractional pel ME methods are proposed in this paper. The proposed method for integer pel ME uses a hierarchical search strategy. This strategy method consists of symmetrical cross-X pattern, multi square grid pattern, diamond patterns. These search patterns places search points symmetrically and evenly that can cover the overall search area not to fall into the local minimum and to reduce the computational time. The proposed method for fractional pel uses full search pattern, center biased fractional pel search pattern and the proposed search pattern. According to block sizes, the proposed method for fractional pel decides the search pattern adaptively. Experiment results show that the speedup improvement of the proposed method over Unsymmetrical cross Multi Hexagon grid Search (UMHexagonS) and Full Search (FS) can be up to around $1.2{\sim}5.2$ times faster. Compared to image quality of FS, the proposed method shows an average PSNR drop of 0.01 dB while showing an average PSNR gain of 0.02 dB in comparison to that of UMHexagonS.

A Center Biased Cross-Diamond Search Algorithm for Fast Fractional-pel Motion Estimation (고속 부화소 움직임 추정을 위한 중심 지향적 십자 다이아몬드 탐색 알고리즘)

  • Jo, Seong-Hyeon;Lee, Jong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.2
    • /
    • pp.78-84
    • /
    • 2009
  • In general video coding systems, motion estimation (ME) is regarded as a vital component in a video coder as it consumes a large amount of computation resources. Fractional pixel motion estimation can improve the video compression rate at the cost of higher computational complexity. It is based on the experimental results that the sum of absolute differences (SAD) shows parabolic shape and thus can be approximated by using interpolation technique. In this paper, we propose a fast fractional pixel search algorithm by combining SASR (Simplified Adaptive Search Range) and the CBCDS (Center Biased Cross-Diamond Search) pattern with the predicted motion vector. Compare with the fractional pel full search and the CBFPS, the proposed CBCDS algorithms can reduce fractional pel search points up to 81.4%, respectively with the PSNR lost about 0.05dB.

Adaptive Fractional Pel Motion Estimation for Fast HEVC Encoding (부화소 움직임 추정의 선택적 수행을 통한 HEVC 부호화 고속화)

  • Mok, Jung-Soo;Ahn, Yong-Jo;Sim, Dong-Gyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.268-270
    • /
    • 2014
  • 본 논문은 FME (Fractional Motion Estimation)의 선택적 수행을 통한 HEVC (High Efficiency Video Coding)의 부호화 고속화 방법을 제안한다. HEVC 는 H.264/AVC 에 비해 약 2 배의 압축 효율을 보이지만, 쿼드트리 구조의 재귀적 호출은 복잡도를 크게 증가시켰다. 이러한 이유로 인하여 HEVC 부호화기의 고속 모드 결정 및 고속화 연구가 활발히 진행되고 있다. 본 논문에서는 HEVC 부호화기 중 가장 높은 복잡도를 갖는 화면 간 예측 모드의 부화소 움직임 추정 (FME: Fractional Motion Estimation)의 선택적 수행을 통하여 부호화기를 고속화하는 방법을 제안한다. 제안하는 방법을 HEVC 레퍼런스 소프트웨어인 HM-12.0 에 적용하여 평균 2.0%의 BD-BR 가 증가하였으나, 평균 36.0%의 부호화 시간 감소 효과를 얻을 수 있었다.

  • PDF

Fast Motion Estimation for Variable Motion Block Size in H.264 Standard (H.264 표준의 가변 움직임 블록을 위한 고속 움직임 탐색 기법)

  • 최웅일;전병우
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.209-220
    • /
    • 2004
  • The main feature of H.264 standard against conventional video standards is the high coding efficiency and the network friendliness. In spite of these outstanding features, it is not easy to implement H.264 codec as a real-time system due to its high requirement of memory bandwidth and intensive computation. Although the variable block size motion compensation using multiple reference frames is one of the key coding tools to bring about its main performance gain, it demands substantial computational complexity due to SAD (Sum of Absolute Difference) calculation among all possible combinations of coding modes to find the best motion vector. For speedup of motion estimation process, therefore, this paper proposes fast algorithms for both integer-pel and fractional-pel motion search. Since many conventional fast integer-pel motion estimation algorithms are not suitable for H.264 having variable motion block sizes, we propose the motion field adaptive search using the hierarchical block structure based on the diamond search applicable to variable motion block sizes. Besides, we also propose fast fractional-pel motion search using small diamond search centered by predictive motion vector based on statistical characteristic of motion vector.

A Low Memory Bandwidth Motion Estimation Core for H.264/AVC Encoder Based on Parallel Current MB Processing (병렬처리 기반의 H.264/AVC 인코더를 위한 저 메모리 대역폭 움직임 예측 코어설계)

  • Kim, Shi-Hye;Choi, Jun-Rim
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.2
    • /
    • pp.28-34
    • /
    • 2011
  • In this paper, we present integer and fractional motion estimation IP for H.264/AVC encoder by hardware-oriented algorithm. In integer motion engine, the reference block is used to share for consecutive current macro blocks in parallel processing which exploits data reusability and reduces off-chip bandwidth. In fractional motion engine, instead of two-step sequential refinement, half and quarter pel are processed in parallel manner in order to discard unnecessary candidate positions and double throughput. The H.264/AVC motion estimation chip is fabricated on a MPW(Multi-Project Wafer) chip using the chartered $0.18{\mu}m$ standard CMOS 1P5M technology and achieves high throughput supporting HDTV 720p 30 fps.