• Title/Summary/Keyword: Fraction of scrap

Search Result 15, Processing Time 0.021 seconds

Effect of Scrap Impurities on Microstructure and Mechanical Properties of Zr Alloys (스크랩 불순물이 Zr 합금의 미세조직 및 기계적 특성에 미치는 영향)

  • Jeong, Gu Beom;Kim, In Won;Song, Jae Sook;Shin, Pyung Woo;Hong, Sun Ig
    • Journal of Korea Foundry Society
    • /
    • v.36 no.3
    • /
    • pp.81-87
    • /
    • 2016
  • In this study, the effect of scrap ratio on the mechanical properties of Zr alloys was studied. Oxygen content in the ingot cake increased rapidly with increasing fraction of scrap, which can be attributed to the surface oxide of scrap including small pieces of turning, chips, etc. Iron content did not increase much with the increasing addition of scrap, suggesting scrap materials was well reserved in the iron-free container. As-cast structure of Zr alloy with the scrap:sponge ratio displayed plate/or needle ${\alpha}$ phase and no appreciable change of the cast structure was observed with change of scrap fraction. The strength increases with increasing fraction of scrap, which can be attributed to the increase of oxygen content. The ductility decreased slightly with increase of scrap fraction. Dislocation-oxygen interaction is known to increase the strength at the expense of ductility. Ingot cake with intentionally added $Fe_2O_3$ exhibited the drastic decrease of the formability, even exhibited the brittle fracture behavior during rolling. The oxidation resistance, however, increased with the increase of scrap fraction because of high oxygen content, which may prevent more penetration and diffusion of oxygen into matrix.

A Study on the Machine Selection Problem Considering the Cost of Defective Products in the Machining Process (절삭가공에서의 불량가공비용을 고려한 기계선정에 관한 연구)

  • Park, Chan-Woong
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.345-350
    • /
    • 2014
  • The most important decision of process planning for the manufacturing system is the machine selection problem to minimize machining costs. Each machine has its own different machining performance indicating a different fraction of scrap, making the cost of scrap generated by machining is different for each machine. Therefore, when we decide on machine selection, we must consider the machining cost and the cost of scrap generated. This paper describes the statistical model for the fraction of scrap generated by machining and the machine selection algorithm considering the total cost including the machining cost and the cost of scrap generated.

Recovery of Gold from Electronic Scrap by Hydrometallurgical Process

  • Lee, Churl-Kyoung;Rhee, Kang-In;Sohn, Hun-Joon
    • Resources Recycling
    • /
    • v.6 no.3
    • /
    • pp.36-40
    • /
    • 1997
  • A series of processes has been developed to recover the gold from electronic scrap containing about 200~600 ppm Au. First, mechanical beneficiation including shredding, crushing and screening was employed. Results showed that 99 percent of gold component leaves in the fraction of under 1mm of crushed scrap and its concentration was enriched to about 800 ppm without incineration. The crushed scrap was leached in 50% aqua regia solution and gold was completely dissolved at $60^{\circ}C$ withing 2 hours. Other valuable metals such as silver, copper, nickel and iron were also dissolved. The resulting solution was boiled to remove nitrous compounds in the leachate. Finally, a newly designed electrolyzer was tested to recover the gold metal. More than 99% of gold and silver were recovered within an hour by electrowinning process.

  • PDF

Effective thermal conductivity of the phase change material with metal scrap (금속스크랩이 혼합된 상변화물질의 유효열전도율)

  • 김시범;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.923-928
    • /
    • 1986
  • A set of measurements has been made for the thermal conductivity of the pure paraffin in liquid and solid phases and for the effective thermal conductivity of the paraffin with metal scrap with the aid of the heat flux meter. Ther thermopile-type heat flux meter has been designed by steady state method and the functional relation between the temperature difference of both sides and heat flux has been obtained. The measured values of thermal conductivity are compared with the existing data for the pure paraffin and with the predicated values from the suggested model in which only one empirical constant is contained. The comparison within ten percent of the volume fraction of the metal scrap in the paraffin is satisfactory.

Effect of Scrap Content on the Hot Tearing Property and Tensile Property of AC2BS Alloy (AC2BS합금의 열간 균열강도 및 인장특성에 미치는 스크랩 함량의 영향)

  • Kwon, Yong-Ho;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.36 no.2
    • /
    • pp.67-74
    • /
    • 2016
  • The effects of scrap content on the hot tearing property and tensile property were investigated in AC2BS alloy. The hot tearing strengths were $16.4kgf/cm^2$, $15.2kgf/cm^2$, $14.9kgf/cm^2$ and $13.3kgf/cm^2$, respectively, under the constant solid fraction of 29.3% when the scrap contents of the specimens were 0%, 20%, 35% and 50%. In the same way, tensile strengths of the as-cast condition were $24.5kgf/mm^2$, $23.7kgf/mm^2$, $17.3kgf/mm^2$ and $16.0kgf/mm^2$, respectively, and the corresponding tensile strengths of the T6 heat treatment condition were $27.2kgf/mm^2$, $26.7kgf/mm^2$, $24.2kgf/mm^2$ and $23.9kgf/mm^2$. Hot tearing strength and tensile strength decreased as scrap content of the specimen increased. According to the evaluation of the quantitative hot tearing and tensile test results, the decrease of these strengths is due to the presence of oxide films which act as crack initiation site of the specimens. Therefore, elimination of oxide films of aluminum melt to maintain melt cleanliness is required.

Recycling of Aluminum Alloy from Al-Cu Metal Matrix Composite Reinforced with SiC Particulates

  • Sharma, Ashutosh;Ahn, Byungmin
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.691-695
    • /
    • 2018
  • In this study, we investigate the recycling of aluminum-based metal matrix composites(AMCs) embedded with SiC particulates. The microstructure of the AMCs is characterized by X-ray diffraction and scanning electron microscopy. The possibility of recycling the composite scrap is attempted from the melted alloy and SiC particulates by re-melting, holding and solidification in crucibles. The recovery percentage of the matrix alloy is calculated after a number of holding times, 0, 5, 10, 15, 20, 25 and 30 minutes and for different particulate sizes and weight fractions in the Al matrix. The results show that the recovery percentage of the matrix alloy, as well as the time required for maximum recovery of the matrix, is dependent on the size and weight fraction of SiC particulates. In addition, the percentage recovery increases with particulate size but drops with the particulate fraction in the matrix. The time to reach maximum recovery falls rapidly with an increase in particulate size and fraction.

Feasibility of Copper Powder Fabrication by Ball Milling of Copper Chip Scrap Occurred During Cutting Process of Copper Pipe (구리 관(管)의 절단(切斷) 공정(工程)중 발생한 구리칩 스크랩의 볼밀링에 의한 구리 분말(粉末) 제조(製造) 가능성(可能性))

  • Hong, Seong-Hyeon
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.37-42
    • /
    • 2011
  • Copper chip scrape has been occurred by cutting of copper pipe. The feasibility of copper chip scrape into the copper powder by milling was studied. Two milling type such as rod milling and horizontal balling milling were applied in this research. Copper chip can not fragmented into powder by using rod milling. In contrast to rod milling, copper chip can be changed into powder by horizontal ball milling for above 36 hours. It was found that recycling of copper chip scraps into copper powder by horizontal ball milling is possible and powder fraction percent ($75{\sim}150{\mu}m$) of milled copper chip for 48 hours is 25.3%.

Analysis of Reconstituted Tobacco Products by Characterizing Morphological Properties of Major Structure Materials (국내외산 판상엽 구성물질의 형태적 특성 비교)

  • Sung Yong-Joo;Han Young-Lim;Kim Sam-Gon;Kim Geun-Su;Joo Jeon-Hyun;Song Tae-Won
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.2
    • /
    • pp.189-194
    • /
    • 2005
  • The morphological properties of various structure materials of domestic and foreign reconstituted tobacco products(RTP) were investigated by using the Bauer-McNett classifier and the image analyzer. The results of the fiber classification showed the fraction of the bigger size structure materials was larger in a domestic RTP than that in two foreign RTPs. In case of fine fraction, the domestic RTP had bigger fine fraction than two foreign RTPs. Images of each structure materials showed the scrap in the foreign RTPs kept the original shape which were rare in the domestic RTP fractions. Those results deduced that the raw materials in a foreign RTP process might be treated separately depending on the mechanical and morphological properties, which could reduce the amount of fine generation and increase the efficiency in raw material treatment.

Optimization of Synthesis Conditions for Improving Ti3AlC2 MAX Phase Using Titanium Scraps (타이타늄 스크랩 활용 Ti3AlC2 MAX 상분율 향상을 위한 합성 조건 최적화)

  • Taeheon Kim;Jae-Won Lim
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.22-30
    • /
    • 2024
  • To synthesize the Ti3AlC2 MAX phase, a crucial precursor for generating the two-dimensional material MXene, the use of Ti scrap as an initial material is an economically feasible approach. This study aims to optimize the synthesis conditions for the phase fraction of the Ti3AlC2 MAX phase utilizing Ti scrap as the Ti source. The deoxidation of Ti powders, prepared through the hydrogenation-dehydrogenation process from Ti scrap, was effectively accomplished using the deoxidation in solid-state (DOSS) process. The optimal synthesis conditions were established by blending DOSS-Ti, Al, and graphite powders with particle sizes ranging from 25 ~ 32 ㎛ in a molar ratio of 3:1.1:2. The resulting phase fractions were as follows: Ti3AlC2 at 97.25 wt.%, TiC at 0.93 wt.%, and Al3Ti at 1.82 wt.%. Furthermore, the oxygen content of the Ti3AlC2 MAX powder, spanning from 25 ~ 45 ㎛, was measured at 4,210 ppm.

A Study on the Contribution of Fugitive Dust to the Residential Area near the Port of Incheon

  • Jeon, Ki-Joon;Bang, Jin-Chul;Jung, Yong-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E4
    • /
    • pp.145-155
    • /
    • 2001
  • Simple mass balance method was developed to estimate the contribution of two major fugitive dust sources in the Port of Incheon to a nearby residential area in this study. Using the relatively small number of TSP data as well as the data on mass fraction of Fe and organic materials in the sampled dust, our simplified method demonstrated its ability to estimate the contribution of each fugitive source to a specific location including the residential area with relatively reasonable accuracy. It is clear from this simple method can be applied to the situation where two major fugitive dust sources are responsible for the high TSP concentration around the source area and there are clear marker chemicals representing the characteristics of the fugitive dust sources.

  • PDF