• Title/Summary/Keyword: Fractal parameters

Search Result 99, Processing Time 0.024 seconds

Wind-induced fragility assessment of urban trees with structural uncertainties

  • Peng, Yongbo;Wang, Zhiheng;Ai, Xiaoqiu
    • Wind and Structures
    • /
    • v.26 no.1
    • /
    • pp.45-56
    • /
    • 2018
  • Wind damage of urban trees arises to be a serious issue especially in the typhoon-prone areas. As a family of tree species widely-planted in Southeast China, the structural behaviors of Plane tree is investigated. In order to accommodate the complexities of tree morphology, a fractal theory based finite element modeling method is proposed. On-site measurement of Plane trees is performed for physical definition of structural parameters. It is revealed that modal frequencies of Plane trees distribute in a manner of grouped dense-frequencies; bending is the main mode of structural failure. In conjunction with the probability density evolution method, the fragility assessment of urban trees subjected to wind excitations is then proceeded. Numerical results indicate that small-size segments such as secondary branches feature a relatively higher failure risk in a low wind level, and a relatively lower failure risk in a high wind level owing to windward shrinks. Besides, the trunk of Plane tree is the segment most likely to be damaged than other segments in case of high winds. The failure position tends to occur at the connection between trunk and primary branches, where the logical protections and reinforcement measures can be implemented for mitigating the wind damage.

Non-uniform virtual material modeling on contact interface of assembly structure with bolted joints

  • Cao, Jianbin;Zhang, Zhousuo;Yang, Wenzhan;Guo, Yanfei
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.557-568
    • /
    • 2019
  • Accurate modeling of contact interface in bolted joints is crucial in predicting the dynamic behavior for bolted assemblies under external load. This paper presents a contact pressure distribution based non-uniform virtual material method to describe the joint interface of assembly structure, which is connected by sparsely distributed multi-bolts. Firstly, the contact pressure distribution of bolted joints is obtained by the nonlinear static analysis in the finite element software ANSYS. The contact surface around bolt hole is divided into several sub-layers, and contact pressure in each sub-layer is thought to be evenly. Then, considering multi-asperity contact at the micro perspective, the relationship between contact pressure and interfacial virtual material parameters for each sub-layer is established by using the fractal contact theory. Finally, an experimental platform for the dynamic characteristics testing of a beam lap structure with double-bolted joint is constructed to validate the efficiency of proposed method. It is found that the theoretical results are in good agreement with experimental results by impact response in both time- and frequency-domain, and the relative errors of the first four natural frequencies are less than 1%. Furthermore, the presented model is used to examine the effect of rough contact surface on dynamic characteristics of bolted joint.

A Study on Fatigue Crack Growth and Life Modeling using Backpropagation Neural Networks (역전파신경회로망을 이용한 피로균열성장과 수명 모델링에 관한 연구)

  • Jo, Seok-Su;Ju, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.634-644
    • /
    • 2000
  • Fatigue crack growth and life is estimated by various fracture mechanical parameters but affected by load, material and environment. Fatigue character of component without surface notch cannot be e valuated by above-mentioned parameters due to microstructure of in-service material. Single fracture mechanical parameter or nondestructive parameter cannot predict fatigue damage in arbitrary boundary condition but multiple fracture mechanical parameters or nondestructive parameters can Fatigue crack growth modelling with three point representation scheme uses this merit but has limit on real-time monitoring. Therefore, this study shows fatigue damage model using backpropagatior. neural networks on the basis of X-ray half breadth ratio B/$B_o$ fractal dimension $D_f$ and fracture mechanical parameters can predict fatigue crack growth rate da/dN and cycle ratioN/$N_f$ at the same time within engineering estimated mean error(5%).

Predicting concrete's compressive strength through three hybrid swarm intelligent methods

  • Zhang Chengquan;Hamidreza Aghajanirefah;Kseniya I. Zykova;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • One of the main design parameters traditionally utilized in projects of geotechnical engineering is the uniaxial compressive strength. The present paper employed three artificial intelligence methods, i.e., the stochastic fractal search (SFS), the multi-verse optimization (MVO), and the vortex search algorithm (VSA), in order to determine the compressive strength of concrete (CSC). For the same reason, 1030 concrete specimens were subjected to compressive strength tests. According to the obtained laboratory results, the fly ash, cement, water, slag, coarse aggregates, fine aggregates, and SP were subjected to tests as the input parameters of the model in order to decide the optimum input configuration for the estimation of the compressive strength. The performance was evaluated by employing three criteria, i.e., the root mean square error (RMSE), mean absolute error (MAE), and the determination coefficient (R2). The evaluation of the error criteria and the determination coefficient obtained from the above three techniques indicates that the SFS-MLP technique outperformed the MVO-MLP and VSA-MLP methods. The developed artificial neural network models exhibit higher amounts of errors and lower correlation coefficients in comparison with other models. Nonetheless, the use of the stochastic fractal search algorithm has resulted in considerable enhancement in precision and accuracy of the evaluations conducted through the artificial neural network and has enhanced its performance. According to the results, the utilized SFS-MLP technique showed a better performance in the estimation of the compressive strength of concrete (R2=0.99932 and 0.99942, and RMSE=0.32611 and 0.24922). The novelty of our study is the use of a large dataset composed of 1030 entries and optimization of the learning scheme of the neural prediction model via a data distribution of a 20:80 testing-to-training ratio.

Object-oriented coder using block-based motion vectors and residual image compensation (블러기반 움직임 벡터와 오차 영상 보상을 이용한 물체지향 부호화기)

  • 조대성;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.96-108
    • /
    • 1996
  • In this paper, we propose an object-oriented coding method in low bit-rate channels using block-based motion vectors and residual image compensation. First, we use a 2-stage algorithm for estimating motion parameters. In the first stage, coarse motion parameters are estimated by fitting block-based motion vectors and in the second stage, the estimated motion parametes are refined by the gradient method using an image reconstructed by motion vectors detected in the first stage. Local error of a 6-parameter model is compensted by blockwise motion parameter correction using residual image. Finally, model failure (MF) region is reconstructed by a fractal mapping method. Computer simulation resutls show that the proposed method gives better performance than the conventional ones in terms of th epeak signal to noise ratio (PSNR) and compression ratio (CR).

  • PDF

Distribution Characteristics of Wear Particles from Material of Machine Elements in Lubricant condition (윤활조건에 따른 기계부품용 소재에서 발생된 마멸입자의 분포 특성)

  • Cho, Yon-Sang;Jun, Sung-Jae;Kim, Young-Hee;Park, Heung-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1607-1612
    • /
    • 2007
  • It necessarily follows that wear particles are generated through a friction and wear in a mechanical moving system. The wear particles are relative to the failure and the life of machine elements directly. To analyze the wear particle, its shape characteristics were calculated quantitative values such as diameter, roundness and fractal parameters by digital image processing. In this study, the histograms of shape parameters of wear particles were used for the purpose of analyzing the distribution of wear particles in various conditions. We consider that the histogram of shape parameter can be effectively represented to study a wear mechanism.

  • PDF

Analysis of Shape Distribution Characteristics of Wear Particles using Histogram (도수분포를 이용한 마멸입자의 형태 분포특성의 분석)

  • Park, Heung-Sik;Woo, Kyu-Sung;Cho, Yon-Sang;Jun, Sung-Jae
    • Tribology and Lubricants
    • /
    • v.23 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • It necessarily follows that wear particles are generated through a friction and wear in a mechanical moving system. The wear particles are relative to the failure and the life of machine elements directly. To analyze the wear particle, its shape characteristics were calculated quantitative values such as diameter, roundness and fractal parameters by digital image processing. In this study, the histograms of shape parameters of wear particles were used for the purpose of analyzing the distribution of wear particles in various conditions. We consider that the histogram of shape parameter can be effectively represented to study a wear mechanism.

Correlation of bone quality in radiographic images with clinical bone quality classification (방사선사진에서의 골질과 임상적으로 평가한 골질 분류의 상관관계)

  • Kim Hyun-Woo;Huh Kyung-Hoe;Park Kwan-Soo;Kim Jeong-Hwa;Yi Won-Jin;Heo Min-Suk;Lee Sam-Sun;Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.36 no.1
    • /
    • pp.25-32
    • /
    • 2006
  • Purpose : To investigate the validity of digital image processing on panoramic radiographs in estimating bone quality before endosseous dental implant installation by correlating bone quality in radiographic images with clinical bone quality classification. Materials and Methods : An experienced surgeon assessed and classified bone quality for implant sites with tactile sensation at the time of implant placement. Including fractal dimension eighteen morphologic features of trabecular pattern were examined In each anatomical sites on panoramic radiographs. Finally bone quality of 67 implant sites were evaluated in 42 patients. Results : Pearson correlation analysis showed that three morphologic parameters had weak linear negative correlation with clinical bone quality classification showing correlation coefficients of -0.276, -0.280, and - 0.289, respectively (p<0.05). And other three morphologic parameters had obvious linear negative correlation with clinical bone quality classification showing correlation coefficients of -0.346, -0.488, and -0.343 respectively (p<0.05). Fractal dimension also had a linear correlation with clinical bone quality classification with correlation coefficients -0.506 significantly (p<0.05). Conclusion : This study suggests that fractal and morphometric analysis using digital panoramic radiographs can be used to evaluate bone quality for implant recipient sites.

  • PDF

Geophysical Implications for Configurational Entropy and Cube Counting Fractal Dimension of Porous Networks of Geological Medium: Insights from Random Packing Simulations (지질매체 공극 구조에 대한 구성 엔트로피와 상자집계 프랙탈 차원의 지구물리학적 의미 및 응용: 무작위 패킹 시뮬레이션 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2010
  • Understanding the interactions between earth materials and fluids is essential for studying the diverse geological processes in the Earth's surface and interior. In order to better understand the interactions between earth materials and fluids, we explore the effect of specific surface area and porosity on structural parameters of pore structures. We obtained 3D pore structures, using random packing simulations of porous media composed of single sized spheres with varying the particle size and porosity, and then we analyzed configurational entropy for 2D cross sections of porous media and cube counting fractal dimension for 3D porous networks. The results of the configurational entropy analysis show that the entropy length decreases from 0.8 to 0.2 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$, and the maximum configurational entropy increases from 0.94 to 0.99 with increasing porosity from 0.33 to 0.46. On the basis of the strong correlation between the liquid volume fraction (i.e., porosity) and configurational entropy, we suggest that elastic properties and viscosity of mantle melts can be expressed using configurational entropy. The results of the cube counting fractal dimension analysis show that cube counting fractal dimension increases with increasing porosity at constant specific surface area, and increases from 2.65 to 2.98 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$. On the basis of the strong correlation among cube counting fractal dimension, specific surface area, and porosity, we suggest that seismic wave attenuation and structural disorder in fluid-rock-melt composites can be described using cube counting fractal dimension.

Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body

  • Huang, Ming;Xu, Chao-Shui;Zhan, Jin-Wu;Wang, Jun-Bao
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.333-352
    • /
    • 2017
  • A comparison study is made between the dynamic properties of an argillaceous siltstone and its grouting-reinforced body. The purpose is to investigate how grout injection can help repair broken soft rocks. A slightly weathered argillaceous siltstone is selected, and part of the siltstone is mechanically crushed and cemented with Portland cement to simulate the grouting-reinforced body. Core specimens with the size of $50mm{\times}38mm$ are prepared from the original rock and the grouting-reinforced body. Impact tests on these samples are then carried out using a Split Hopkinson Pressure Bar (SHPB) apparatus. Failure patterns are analyzed and geotechnical parameters of the specimens are estimated. Based on the experimental results, for the grouting-reinforced body, its shock resistance is poorer than that of the original rock, and most cracks happen in the cementation boundaries between the cement mortar and the original rock particles. It was observed that the grouting-reinforced body ends up with more fragmented residues, most of them have larger fractal dimensions, and its dynamic strength is generally lower. The mass ratio of broken rocks to cement has a significant effect on its dynamic properties and there is an optimal ratio that the maximum dynamic peak strength can be achieved. The dynamic strain-softening behavior of the grouting-reinforced body is more significant compared with that of the original rock. Both the time dependent damage model and the modified overstress damage model are equally applicable to the original rock, but the former performs much better compared with the latter for the grouting-reinforced body. In addition, it was also shown that water content and impact velocity both have significant effect on dynamic properties of the original rock and its grouting-reinforced body. Higher water content leads to more small broken rock pieces, larger fractal dimensions, lower dynamic peak strength and smaller elastic modulus. However, the water content plays a minor role in fractal dimensions when the impact velocity is beyond a certain value. Higher impact loading rate leads to higher degree of fragmentation and larger fractal dimensions both in argillaceous siltstone and its grouting-reinforced body. These results provide a sound basis for the quantitative evaluation on how cement grouting can contribute to the repair of broken soft rocks.