• Title/Summary/Keyword: Fractal parameters

Search Result 99, Processing Time 0.029 seconds

Comparison of cone-beam computed tomography and digital panoramic radiography for detecting peri-implant alveolar bone changes using trabecular micro-structure analysis

  • Magat, Guldane;Oncu, Elif;Ozcan, Sevgi;Orhan, Kaan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.48 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • Objectives: We compared changes in fractal dimension (FD) and grayscale value (GSV) of peri-implant alveolar bone on digital panoramic radiography (DPR) and cone-beam computed tomography (CBCT) immediately after implant surgery and 12 months postoperative. Materials and Methods: In this retrospective study, 16 patients who received posterior mandibular area dental implants with CBCT scans taken about 2 weeks after implantation and one year after implantation were analyzed. A region of interest was selected for each patient. FDs and GSVs were evaluated immediately after implant surgery and at 12-month follow-up to examine the functional loading of the implants. Results: There were no significant differences between DPR and CBCT measurements of FD values (P>0.05). No significant differences were observed between FD values and GSVs calculated after implant surgery and at the 12-month follow-up (P>0.05). GSVs were not correlated with FD values (P>0.05). Conclusion: The DPR and reconstructed panoramic CBCT images exhibit similar image quality for the assessment of FD. There were no changes in FD values or GSVs of the peri-implant trabecular bone structure at the 12-month postoperative evaluation of the functional loading of the implant in comparison to values immediately after implantation. GSVs representing bone mass do not align with FD values that predict bone microstructural parameters. Therefore, GSVs and FDs should be considered different parameters for assessing bone quality.

Quantifying the Spatial Heterogeneity of the Land Surface Parameters at the Two Contrasting KoFlux Sites by Semivariogram (세미베리오그램을 이용한 KoFlux 광릉(산림) 및 해남(농경지) 관측지 지면모수의 공간 비균질성 정량화)

  • Moon, Sang-Ki;Ryu, Young-Ryel;Lee, Dong-Ho;Kim, Joon;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.140-148
    • /
    • 2007
  • The remote sensing observations of land surface properties are inevitably influenced by the landscape heterogeneity. In this paper, we introduce a geostatistical technique to provide a quantitative interpretation of landscape heterogeneity in terms of key land surface parameters. The study areas consist of the two KoFlux sites: (1) the Gwangneung site, covered with temperate mixed forests on a complex terrain, and (2) the Haenam site with mixed croplands on a relatively flat terrain. The semivariogram and fractal analyses were performed for both sites to characterize the spatial heterogeneity of two radiation parameters, i.e., land surface temperature (LST) and albedo. These parameters are the main factors affecting the reflected longwave and shortwave radiation components from the two study sites. We derived them from the high-resolution Landsat ETM+ satellite images collected on 23 Sep. 2001 and 14 Feb. 2002. The results of our analysis show that the characteristic scales of albedo was >1 km at the Gwangneung site and approximately 0.3 km at the Haenam site. For LST, the scale of heterogeneity was also >1 km at the Gwangneung site and >0.6 to 1.0 km at the Haenam site. At both sites, there was little change in the characteristic scales of the two parameters between the two different seasons.

Relationship of box counting of fractured rock mass with Hoek-Brown parameters using particle flow simulation

  • Ning, Jianguo;Liu, Xuesheng;Tan, Yunliang;Wang, Jun;Tian, Chenglin
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.619-629
    • /
    • 2015
  • Influenced by various mining activities, fractures in rock masses have different densities, set numbers and lengths, which induce different mechanical properties and failure modes of rock masses. Therefore, precisely expressing the failure criterion of the fractured rock influenced by coal mining is significant for the support design, safety assessment and disaster prevention of underground mining engineering subjected to multiple mining activities. By adopting PFC2D particle flow simulation software, this study investigated the propagation and fractal evolution laws of the micro cracks occurring in two typical kinds of rocks under uniaxial compressive condition. Furthermore, it calculated compressive strengths of the rocks with different confining pressures and box-counting dimensions. Moreover, the quantitative relation between the box-counting dimension of the rocks and the empirical parameters m and s in Hoek-Brown strength criterion was established. Results showed that with the increase of the strain, the box-counting dimension of the rocks first increased slowly at the beginning and then exhibited an exponential increase approximately. In the case of small strains of same value, the box-counting dimensions of hard rocks were smaller than those of weak rocks, while the former increased rapidly and were larger than the latter under large strain. The results also presented that there was a negative correlation between the parameters m and s in Hoek-Brown strength criterion and the box-counting dimension of the rocks suffering from variable mining activities. In other words, as the box-counting dimensions increased, the parameters m and s decreased linearly, and their relationship could be described using first order polynomial function.

Floc Property of Yeongsan Cohesive Bed Sediment with Respect to Salinity and Sediment Concentration (점착성 퇴적물의 염분과 퇴적물농도에 따른 플럭 특성: 플럭카메라를 이용한 실험연구)

  • Shin, Hyun-Jung;Smith, S. Jarrell;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.3
    • /
    • pp.122-130
    • /
    • 2013
  • To examine floc characteristics of cohesive bed sediment of the Yeongsan River estuary, a floc camera system has been developed and utilized to observe flocs under varying conditions. In order to validate the floc camera system, sand particles were passed through 88-125 and $63-88{\mu}m$ sieves and observed within the laboratory. Mean grain size and settling velocities were found to be 102 and $56.2{\mu}m$ and 6.7 and 5.9 mm/s, respectively. Artifacts of particles estimated outside of the sieve range are attributed to being imaged out of the depth of focus. However, as mean grain size and settling velocity of each size class were within the confidence interval, the floc camera system was confidently used to examine cohesive bed sediments of Yeongsan River estuary. The bed sediment sample was prepared with a concentration of 0.1 g/L in 0 psu deionized water. The mean grain size, settling velocity and fractal dimension of flocs were $40.6{\pm}0.66{\mu}m$, 14 mm/s, and 2.86, respectively. Experiments were also conducted using different salinities (10 and 34 psu) and sediment concentrations (0.1 and 0.3 g/L). Despite changing these parameters, the mean observed grain size and settling velocities were found to be the same within the error range of the system. The relatively higher values of settling velocity and fractal dimension are considered a result of the sediment containing relatively small concentrations of organic matter. Moreover, consistent floc size over various grain sizes and concentrations may be the result of insufficient turbulence to aggregate flocs.

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taeksoo;Han, Ingoo
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support fer multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To date, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques' results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taek-Soo;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support for multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To data, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Micro/Nanotribology and Its Applications

  • Bhushan, Bharat
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.128-135
    • /
    • 1995
  • Atomic force microscopy/friction force microscopy (AFM/FFM) techniques are increasingly used for tribological studies of engineering surfaces at scales, ranging from atomic and molecular to microscales. These techniques have been used to study surface roughness, adhesion, friction, scratching/wear, indentation, detection of material transfer, and boundary lubrication and for nanofabrication/nanomachining purposes. Micro/nanotribological studies of single-crystal silicon, natural diamond, magnetic media (magnetic tapes and disks) and magnetic heads have been conducted. Commonly measured roughness parameters are found to be scale dependent, requiring the need of scale-independent fractal parameters to characterize surface roughness. Measurements of atomic-scale friction of a freshly-cleaved highly-oriented pyrolytic graphite exhibited the same periodicity as that of corresponding topography. However, the peaks in friction and those in corresponding topography were displaced relative to each other. Variations in atomic-scale friction and the observed displacement has been explained by the variations in interatomic forces in the normal and lateral directions. Local variation in microscale friction is found to correspond to the local slope suggesting that a ratchet mechanism is responsible for this variation. Directionality in the friction is observed on both micro- and macro scales which results from the surface preparation and anisotropy in surface roughness. Microscale friction is generally found to be smaller than the macrofriction as there is less ploughing contribution in microscale measurements. Microscale friction is load dependent and friction values increase with an increase in the normal load approaching to the macrofriction at contact stresses higher than the hardness of the softer material. Wear rate for single-crystal silicon is approximately constant for various loads and test durations. However, for magnetic disks with a multilayered thin-film structure, the wear of the diamond like carbon overcoat is catastrophic. Breakdown of thin films can be detected with AFM. Evolution of the wear has also been studied using AFM. Wear is found to be initiated at nono scratches. AFM has been modified to obtain load-displacement curves and for nanoindentation hardness measurements with depth of indentation as low as 1 mm. Scratching and indentation on nanoscales are the powerful ways to screen for adhesion and resistance to deformation of ultrathin fdms. Detection of material transfer on a nanoscale is possible with AFM. Boundary lubrication studies and measurement of lubricant-film thichness with a lateral resolution on a nanoscale have been conducted using AFM. Self-assembled monolyers and chemically-bonded lubricant films with a mobile fraction are superior in wear resistance. Finally, AFM has also shown to be useful for nanofabrication/nanomachining. Friction and wear on micro-and nanoscales have been found to be generally smaller compared to that at macroscales. Therefore, micro/nanotribological studies may help def'me the regimes for ultra-low friction and near zero wear.

Least-Square Fitting of Intrinsic and Scattering Q Parameters (최소자승법(最小自乘法)에 의(衣)한 고유(固有) Q와 산란(散亂) Q의 측정(測定))

  • Kang, Ik Bum;McMechan, George A.;Min, Kyung Duck
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.557-561
    • /
    • 1994
  • Q estimates are made by direct measurements of energy loss per cycle from primary P and S waves, as a function of frequency. Assuming that intrinsic Q is frequency independent and scattering Q is frequency dependent over the frequencies of interest, the relative contributions of each, to a total observed Q, may be estimated. Test examples are produced by computing viscoelastic synthetic seismograms using a pseudo spectral solution with inclusion of relaxation mechanisms (for intrinsic Q) and a fractal distribution of scatterers (for scattering Q). The composite theory implies that when the total Q for S-waves is smaller than that for P-waves (the usual situation), intrinsic Q is dominating; when it is larger, scattering Q is dominating. In the inverse problem, performed by a global least squares search, intrinsic $Q_p$ and $Q_s$ estimates are reliable and unique when their absolute values are sufficiently low that their effects are measurable in the data. Large $Q_p$ and $Q_s$ have no measurable effect and hence are not resolvable. Standard deviation of velocity $({\sigma})$ and scatterer size (A) are less unique as they exhibit a tradeoff as predicted by Blair's equation. For the P-waves, intrinsic and scattering contributions are of approximately the same importance, for S-waves, the intrinsic contributions dominate.

  • PDF

Effects of Walking Speeds and Cognitive Task on Gait Variability (보행속도변화와 동시 인지과제가 보행 가변성에 미치는 영향)

  • Choi, Jin-Seung;Kang, Dong-Won;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.49-58
    • /
    • 2008
  • The purpose of this study was to identify effects of walking speed and a cognitive task during treadmill walking on gait variability. Experiments consisted of 5 different walking speeds(80%, 90%, 100%, 110% and 120% of preferred walking speed) with/without a cognitive task. 3D motion analysis system was used to measure subject's kinematic data. Temporal/spatial variables were selected for this study; stride time, stance time, swing time, step time, double support time, stride length, step length and step width. Two parameters were used to compare stride-to-stride variability with/without cognitive task. One is the coefficient of variance which is used to describe the amount of variability. The other is the detrended fluctuation analysis which is used to infer self-similarity from fluctuation of aspects. Results showed that cognitive task may influence stride-to-stride variability during treadmill walking. Further study is necessary to clarify this result.