• Title/Summary/Keyword: Fourier transform infrared analysis

Search Result 559, Processing Time 0.031 seconds

Genetic Discrimination of Catharanthus roseus Cultivars by Multivariate Analysis of Fourier Transform Infrared Spectroscopy Data

  • Kim, Suk-Weon;Cho, Soo-Hwa;Chung, Hoe-Il;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.201-205
    • /
    • 2007
  • To determine whether pattern recognition based on metabolite fingerprinting for whole cell extracts of higher plants is applied to discriminate plants genetically, leaf samples of eight cultivars of Catharanthus roseus were subjected to Fourier transform infrared spectroscopy (FT-IR). FT-IR fingerprint region data were analyzed by principal component analysis (PCA). Major peaks as biomarkers were identified as the most significant contributors to distinguish samples by using genetic programming. A hierarchical dendrogram based on the results from PCA separated the eight cultivars into two major groups in the same manner as the dendrograms based on genetic fingerprinting methods such as RAPD and AFLP. A slight difference between the dendrograms was found only in branching pattern within each subgroup. Therefore, we conclude that the hierarchical dendrogram based on PCA of the FT-IR data represents the most probable chemotaxonomical relationship between cultivars, which is in general agreement with the genetic relationship determined by conventional DNA fingerprinting methods.

Growth and Variance of Properties Er2O3 Doped Near Stoichiometric LiNbO3Single Crystals by the Czochralski Method (Czochralski법으로 Er2O3이 첨가된 Near Stoichiometric 조성 LiNbO3 단결정의 성장 및 특성변화)

  • ;;;Masayuki Habu;Takeshi Ito;Masakimi Natori
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.746-750
    • /
    • 2003
  • Using the Czochralski method, Er$_2$O$_3$ doped near stoichiometric LiNbO$_3$ single crystals were grown 15~20 mm in diameter and 30-35 mm in length for Z-axis. Lattice constants were inspected by the X-Ray Diffractometer (XRD) and through Fourier Transform-Infrared Spectrophotometer (FT-IR), it observed absorption band. Also, the distributions of Er concentration were confirmed by the Electron Probe Micro Analysis (EPMA).

Mid-infrared (MIR) spectroscopy for the detection of cow's milk in buffalo milk

  • Anna Antonella, Spina;Carlotta, Ceniti;Cristian, Piras;Bruno, Tilocca;Domenico, Britti;Valeria Maria, Morittu
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.531-538
    • /
    • 2022
  • In Italy, buffalo mozzarella is a largely sold and consumed dairy product. The fraudulent adulteration of buffalo milk with cheaper and more available milk of other species is very frequent. In the present study, Fourier transform infrared spectroscopy (FTIR), in combination with multivariate analysis by partial least square (PLS) regression, was applied to quantitatively detect the adulteration of buffalo milk with cow milk by using a fully automatic equipment dedicated to the routine analysis of the milk composition. To enhance the heterogeneity, cow and buffalo bulk milk was collected for a period of over three years from different dairy farms. A total of 119 samples were used for the analysis to generate 17 different concentrations of buffalo-cow milk mixtures. This procedure was used to enhance variability and to properly randomize the trials. The obtained calibration model showed an R2 ≥ 0.99 (R2 cal. = 0.99861; root mean square error of cross-validation [RMSEC] = 2.04; R2 val. = 0.99803; root mean square error of prediction [RMSEP] = 2.84; root mean square error of cross-validation [RMSECV] = 2.44) suggesting that this method could be successfully applied in the routine analysis of buffalo milk composition, providing rapid screening for possible adulteration with cow's milk at no additional cost.

The study of SiON thin film for optical properties. (SiON 박막의 광학적 특성에 대한 연구)

  • Kim, D.H.;Im, K.J.;Kim, K.H.;Kim, H.S.;Sung, M.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.247-250
    • /
    • 2001
  • We studied optical properties of SiON thin-film in the applications of optical waveguide. SiON thin-film was grown in $300^{\circ}C$ by PECVD(plasma enhanced chemical vapor deposition) system. The change of SiON thin-film composition and refractive Index was studied as a function of varying $NH_3$ gas flow rate. As $NH_3$ gas flow rate was increased, Quantity of N and refractive index were increased at the same time. By the results, we could form the SiON thin-film to use of a waveguide with refractive index of 1.6. We analyzed the conditions of the thin-film with FTIR(fourier transform infrared) and OES (optical emission spectroscopy). N-H bonding($3390cm^{-1}$ ) can be removed by thermal annealing. And we could observe the SiH bonding state and quantity by OES analysis in $SiH_4$

  • PDF

The effect of thickness and translucency of polymer-infiltrated ceramic-network material on degree of conversion of resin cements

  • Barutcigil, Kubilay;Buyukkaplan, Ulviye Sebnem
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.2
    • /
    • pp.61-66
    • /
    • 2020
  • PURPOSE. The aim of the present study was to determine the degree of conversion of light- and dual-cured resin cements used in the cementation of all-ceramic restorations under different thicknesses of translucent (T) and high-translucent (HT) polymer-infiltrated ceramic-network (PICN) material. MATERIALS AND METHODS. T and HT PICN blocks were prepared at 0.5, 1.0, 1.5, and 2.0 mm thicknesses (n=80). Resin cement samples were prepared with a diameter of 6 mm and a thickness of 100 ㎛. Light-cured resin cement was polymerized for 30 seconds, and dual-cure resin cement was polymerized for 20 seconds (n=180). Fourier transform infrared spectroscopy (FTIR) was used for degree of conversion measurements. The obtained data were analyzed with ANOVA and Tukey HSD, and independent t-test. RESULTS. As a result of FTIR analysis, the degree of conversion of the light-cured resin cement prepared under 1.5- and 2.0-mm-thick T and HT ceramics was found to be lower than that of the control group. Regarding the degree of conversion of the dual-cured resin cement group, there was no significant difference from the control group. CONCLUSION. Within the limitation of present study, it can be concluded that using of dual cure resin cement can be suggested for cementation of PICN material, especially for thicknesses of 1.5 mm and above.

Quantitative analysis of glycerol concentration in red wine using Fourier transform infrared spectroscopy and chemometrics analysis

  • Joshi, Rahul;Joshi, Ritu;Amanah, Hanim Zuhrotul;Faqeerzada, Mohammad Akbar;Jayapal, Praveen Kumar;Kim, Geonwoo;Baek, Insuck;Park, Eun-Sung;Masithoh, Rudiati Evi;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.299-310
    • /
    • 2021
  • Glycerol is a non-volatile compound with no aromatic properties that contributes significantly to the quality of wine by providing sweetness and richness of taste. In addition, it is also the third most significant byproduct of alcoholic fermentation in terms of quantity after ethanol and carbon dioxide. In this study, Fourier transform infrared (FT-IR) spectroscopy was employed as a fast non-destructive method in conjugation with multivariate regression analysis to build a model for the quantitative analysis of glycerol concentration in wine samples. The samples were prepared by using three varieties of red wine samples (i.e., Shiraz, Merlot, and Barbaresco) that were adulterated with glycerol in concentration ranges from 0.1 to 15% (v·v-1), and subjected to analysis together with pure wine samples. A net analyte signal (NAS)-based methodology, called hybrid linear analysis in the literature (HLA/GO), was applied for predicting glycerol concentrations in the collected FT-IR spectral data. Calibration and validation sets were designed to evaluate the performance of the multivariate method. The obtained results exhibited a high coefficient of determination (R2) of 0.987 and a low root mean square error (RMSE) of 0.563% for the calibration set, and a R2 of 0.984 and a RMSE of 0.626% for the validation set. Further, the model was validated in terms of sensitivity, selectivity, and limits of detection and quantification, and the results confirmed that this model can be used in most applications, as well as for quality assurance.

Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis

  • Kwon, Yong-Kook;Ahn, Myung Suk;Park, Jong Suk;Liu, Jang Ryol;In, Dong Su;Min, Byung Whan;Kim, Suk Weon
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • To determine whether Fourier transform (FT)-IR spectral analysis combined with multivariate analysis of whole-cell extracts from ginseng leaves can be applied as a high-throughput discrimination system of cultivation ages and cultivars, a total of total 480 leaf samples belonging to 12 categories corresponding to four different cultivars (Yunpung, Kumpung, Chunpung, and an open-pollinated variety) and three different cultivation ages (1 yr, 2 yr, and 3 yr) were subjected to FT-IR. The spectral data were analyzed by principal component analysis and partial least squares-discriminant analysis. A dendrogram based on hierarchical clustering analysis of the FT-IR spectral data on ginseng leaves showed that leaf samples were initially segregated into three groups in a cultivation age-dependent manner. Then, within the same cultivation age group, leaf samples were clustered into four subgroups in a cultivar-dependent manner. The overall prediction accuracy for discrimination of cultivars and cultivation ages was 94.8% in a cross-validation test. These results clearly show that the FT-IR spectra combined with multivariate analysis from ginseng leaves can be applied as an alternative tool for discriminating of ginseng cultivars and cultivation ages. Therefore, we suggest that this result could be used as a rapid and reliable F1 hybrid seed-screening tool for accelerating the conventional breeding of ginseng.

Infrared Spectral Signatures of Dust by Ground-based FT-IR and Space-borne AIRS (지상 및 위성 고분해 적외스펙트럼 센서에서 관측된 황사 특성)

  • Lee, Byung-Il;Sohn, Eun-Ha;Ou, Mi-Lim;Kim, Yoon-Jae
    • Atmosphere
    • /
    • v.19 no.4
    • /
    • pp.319-329
    • /
    • 2009
  • The intensive dust observation experiment has been performed at Korea Global Atmosphere Watch Center (KGAW) in Anmyeon, Korea during each spring season from 2007 to 2009. Downward and upward hyper-spectral spectrums over the dust condition were measured to understand the hyper-spectral properties of Asian dust using both ground-based Fourier Transform Infrared Spectroscopy (FT-IR) and space-borne AIRS/Aqua. To understand the impact of the Asian dust, a Line-by-Line radiative transfer model runs to calculate the high resolution infrared spectrum over the wave number range of $500-500cm^{-1}$. Furthermore, the radiosonde, a $PM_{10}$ Sampler, a Micro Pulse Lidar (MPL), and an Aerodynamic Particle Sizer (APS) are used to understand the vertical profile of temperature and humidity and the properties of Asian dust like concentration, altitude of dust layer, and size distribution. In this study, we found the Asian dust distributed from surface up to 3-4 km and volume concentration is increased at the size range between 2 and $8{\mu}m$ The observed dust spectrums are larger than the calculated clear sky spectrums by 15~60K for downward and lower by around 2~6K for upward in the wave number range of $800-1200cm^{-1}$. For the characteristics of the spectrum during the Asian dust, the downward spectrum is revealed a positive slope for $800-1000cm^{-1}$ region and negative slope over $1100-1200cm^{-1}$ region. In the upward spectrum, slopes are opposed to the downward one. It is inferred that the difference between measured and calculated spectrum is mostly due to the contribution of emission and/or absorption of the dust particles by the aerosol amount, size distribution, altitude, and composition.

A study on combustion gas toxicity of polymeric materials using FTIR gas analysis (FTIR 가스분석에 의한 고분자재료의 연소가스독성 평가)

  • Lee, Doo-Hyung;Kong, Young-Kun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.79-84
    • /
    • 2005
  • When polymeric materials are exposed to fire condition, a lot of heat and toxic gases evolved and cause damage to property and human being. Especially toxic gases are major hazard to life safety. This study FTIR(Fourier Transform Infrared) spectrometer analysis was performaed to etermine the gas analysis and the concentration of gases evolved from PVC, FRP, SMC and Ureathane foam using ASTM E 1678 fire model. And FED toxicity index calculated from FTIR data also presented. By the comparison of animal test adopted in KS F 2271 and FTIR gas analysis method, FTIR gas analysis method can replace current animal toxicity test and produce precise and quantitative combustion gas data.

Conservation status assessment of archaeological bone from Fourier Transform Infrared Spectroscopy and histological Analysis (적외선 분광 분석과 조직 분석을 통한 출토 인골의 보존 상태 평가)

  • Lee, Jeongwon;Kim, Sue Hoon;Kim, Yun-Ji;Cho, Eun Min;Kang, Soyeong
    • 보존과학연구
    • /
    • s.35
    • /
    • pp.87-98
    • /
    • 2014
  • Fourier transform infrared spectroscopy(FTIR-ATR) was applied to chemical analysis for conservation status of 10 human bone remains from Joseon Dynasty. The result of crystallinity index (CI) is $4.25{\pm}0.78$, carbonate to carbonate ratio (C/C) is $0.91{\pm}0.04$ and cabonate content (C/P) is $0.19{\pm}0.06$. The higher histological index (HI) confirmed CI and C/P value was increased and C/C value was reduced. While C/C or C/P values analysis is possible. While DNA analysis can be extracted from the bone, C/C values are lower or C/P values are higher was found to the analysis is possible. Chemical assessment of FTIR and histological index consequence is expected to be applicable as a basis for comprehensive understanding of the conservation status excavated bones.

  • PDF