• 제목/요약/키워드: Fourier Transform Spectroscopy

검색결과 1,031건 처리시간 0.024초

Purification and Characterization of a Thermostable Laccase from Trametes trogii and Its Ability in Modification of Kraft Lignin

  • Ai, Ming-Qiang;Wang, Fang-Fang;Huang, Feng
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권8호
    • /
    • pp.1361-1370
    • /
    • 2015
  • A blue laccase was purified from a white rot fungus of Trametes trogii, which was a monomeric protein of 64 kDa as determined by SDS-PAGE. The enzyme acted optimally at a pH of 2.2 to 4.5 and a temperature of 70℃ and showed high thermal stability, with a half-life of 1.6 h at 60℃. A broad range of substrates, including the non-phenolic azo dye methyl red, was oxidized by the laccase, and the laccase exhibited high affinity towards ABTS and syringaldazine. Moreover, the laccase was fairly metal-tolerant. A high-molecular-weight kraft lignin was effectively polymerized by the laccase, with a maximum of 6.4-fold increase in weight-average molecular weight, as demonstrated by gel permeation chromatography. Notable structural changes in the polymerized lignin were detected by Fourier transform infrared spectroscopy and 1H NMR spectroscopy. This revealed an increase in condensed structures as well as carbonyl and aliphatic hydroxyl groups. Simultaneously, phenolic hydroxyl and methoxy groups decreased. These results suggested the potential use of the laccase in lignin modification.

전기방사법으로 제조된 Zein 나노복합체 (Zein Nanocomposites Prepared by Electrospinning Technique)

  • 김인교;최재영;김영화;염정현
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2011년도 제45차 학술발표회
    • /
    • pp.5-5
    • /
    • 2011
  • 나노섬유를 제조하는 방법 중에는 상분리 현상을 이용한 방법, 자가 조립성을 이용한 방법, 템플레이트를 이용한 방법, 전기방사법이 있으며 특히 전기방사법은 연속적으로 균일한 나노섬유를 제조할 수 있다. 또한 전기방사법은 장비가 간단하며 고분자 blend ratio와 무기재료의 함량에 따라 뛰어난 특성을 나타내는 나노복합섬유를 만들 수 있다. 최근 식물에서 추출한 단백질을 전기방사법을 이용하여 나노입자 및 나노섬유를 제조하고 이를 의료 분야 등에 적용하기 위한 연구가 활발히 진행되고 있으며 이런 식물성 단백질은 동물성 단백질에 비하여 인체 적용이 용이하고 매장량이 풍부한 장점이 있다. 본 연구에서는 전기방사법을 이용하여 옥수수에서 추출한 단백질인 zein의 나노입자 및 나노섬유를 제조하였다. 또한 천연 추출물이 혼입된 복합 나노입자 및 나노섬유를 제조하여 zein이 가진 고유 특성 이외에 천연 추출물의 특성을 추가로 부여해서 더욱 발전된 나노입자 및 나노섬유를 제조하였다. 고분자 농도, 전압, 방사거리 등 다양한 공정변수를 조절하여 최적의 조건을 확립하였으며 제조된 나노입자 및 나노섬유는 field-emission type scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV/vis), fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC)를 이용하여 특성분석을 실시하였다.

  • PDF

Effect of ${\gamma}$-Ray Irradiation on Surface Oxidation of Ultra High Molecular Weight Polyethylene/Zirconia Composite Prepared by in situ Ziegler-Natta Polymerization

  • Kwak, Soon-Jong;Noh, Dong-Il;Chun, Heung-Jae;Lim, Youn-Mook;Nho, Young-Chang;Jang, Ju-Woong;Shim, Young-Bock
    • Macromolecular Research
    • /
    • 제17권8호
    • /
    • pp.603-608
    • /
    • 2009
  • Novel ultra-high molecular weight polyethylene (UHMWPE)/zirconia composites were previously prepared by the in situ polymerization of ethylene using a Ti-based Ziegler-Natta catalyst supported on to the surface of zirconia, as a bearing material for artificial joints. Tribological tests revealed that a uniform dispersion of zirconia in UHMWPE markedly increased the wear resistance. The effects of zirconia content on the oxidation behavior of the ${\gamma}$-ray-treated UHMWPE/zirconia composite surfaces were examined. The oxidation index that estimates the oxidation degree as the content of total carbonyl compounds was monitored using Fourier transform infrared spectroscopy-attenuated total reflectance. The changes in the surface composition due to the oxidation were confirmed by electron spectroscopy for chemical analysis. The extent of oxidation decreased with increasing zirconia content, which was attributed to the increased crystallinity as well as the decreased polymer portion of the UHMWPE/zirconia composites.

화학기상증착법을 이용한 $MoS_2$ 증착에 관한 연구

  • 문지훈;김동빈;황찬용;강상우;김태성
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.116.2-116.2
    • /
    • 2013
  • 최근 그래핀, hexagonal boron nitride (h-BN) 및 $MoS_2$ (molybdenum disulfide)와 같은 2차원 결정 물질들은 무어의 법칙 (Moore's Law)를 뛰어넘어 계속적인 소자의 소형화를 가능케 하고 또한 대면적, 저비용 소자 개발을 가능케 하는 우수한 특성을 가진 차세대 반도체 트랜지스터 소재로 각광받고 있다. $MoS_2$는 bulk 상태일 때는 1.2 eV의 indirect 밴드갭을 가지지만 단층형태일 때는 1.8 eV의 direct 밴드갭을 가지며 dielectric screening 기법 등을 통해 mobility를 향상시킬 수 있는 것으로 연구된 바 있다. 본 연구에서는 화학기상증착(chemical vapor deposition, CVD)법을 이용하여 $MoS_2$박막을 형성하기 위한 기초연구인 Mo전구체의 특성 평가 및 적합한 공정조건 개발 연구를 수행하였다. 사용한 전구체는 $Mo(CO)^6$ (Molybdenum hexacarbonyl)이고, 온도 및 압력, 반응기체($H_2S$, Hydrogen sulfide) 유량 등의 공정 조건 변화에 따른 거동을 Fourier transform infrared spectroscopy (FT-IR) 시스템을 사용하여 측정하였다. 또한 $Mo(CO)^6$의 분자구조를 상용 프로그램인 Gaussian으로 시뮬레이션 하여 실제 FT-IR 측정 결과값과 비교 분석하였다. 화학기상증착법을 이용한 $MoS_2$ 증착조건 최적화를 위하여 다양한 온도, 유량, 압력, 및 기판 종류에 대하여 증착 실험을 수행하였으며, 증착된 샘플은 scanning electron microscope (SEM), Raman spectroscopy를 이용하여 분석하였다.

  • PDF

Effect of solids retention time on membrane fouling in membrane bioreactors at a constant mixed liquor suspended solids concentration

  • Hao, L.;Liss, S.N.;Liao, B.Q.
    • Membrane and Water Treatment
    • /
    • 제8권4호
    • /
    • pp.337-353
    • /
    • 2017
  • Membrane fouling at different solids retention times (SRT) (7, 12 and 20 days) was studied under well-controlled conditions in a laboratory-scale aerobic submerged membrane bioreactor under constant biomass concentration using a synthetic high strength wastewater. An increase in SRT was found to improve membrane performance and this correlated to changes in the total production of bound extracellular polymeric substances (EPS), and the composition and properties of bound EPS using X-ray photoelectron spectroscopy (XPS) and Fourier transform-infrared spectroscopy (FTIR) and floc sizes. A larger amount of total bound EPS was found at the lowest SRT (7 days) tested but the ratio of proteins (PN) to carbohydrates (CH) in bound EPS increased with an increase in SRT. Similarly, the quantity of soluble microbial products (SMP) decreased with an increase in SRT and the SMP PN/CH ratio increased with an increase in SRT. SMP concentrations positively correlated to the percentage of membrane pore blocking resistance. The quantity of total bound EPS and total SMP positively corresponded to the membrane fouling rate, while the PN/CH ratio in the bound EPS and SMP negatively correlated to the membrane fouling rate. The results show that both the quantity and composition of bound EPS and SMP and floc sizes are important in controlling membrane fouling.

Ion Beam-based Surface Modification of Polyimide Films for Adhesion Improvement with Deposited Metal Layer

  • Cho, Hwang-Woo;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak;Nho, Young-Chang
    • 방사선산업학회지
    • /
    • 제4권4호
    • /
    • pp.335-339
    • /
    • 2010
  • In this study, the surface of polyimide (PI) films was modified using ion implantation to enhance its adhesion to a deposited copper (Cu) layer. The surfaces of the PI films were implanted with 150 keV $Xe^+$ ions at fluences varying from $1{\times}10^{14}$ to $1{\time}10^{16}ions\;cm^{-2}$. The Cu layers were then deposited on the implanted PI. The surface properties of the implanted PI film were investigated based on the contact angle measurements, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Furthermore, the adhesive strength between the deposited Cu layer and PI film was estimated through a scratch test using a nanoindenter. As a result, the surface environment of the PI film was changed by the ion implantation, which could have a significant effect on the adhesion between the deposited Cu layer and the PI.

Surface treatment of sol-gel bioglass using dielectric barrier discharge plasma to enhance growth of hydroxyapatite

  • Soliman, Islam El-Sayed;Metawa, Asem El-Sayed;Aboelnasr, Mohamed Abdel Hameed;Eraba, Khairy Tohamy
    • Korean Journal of Chemical Engineering
    • /
    • 제35권12호
    • /
    • pp.2452-2463
    • /
    • 2018
  • Surface treatment of sol-gel bioglass is required to increase its biomedical applications. In this study, a dielectric barrier discharge (DBD) plasma treatment in atmospheric pressure was performed on the surface of [$SiO_2-CaO-P_2O_5-B_2O_3$] sol-gel derived glass. The obtained bioglass was treated by plasma using discharge current 12 mA with an exposure period for 30 min. The type of discharge can be characterized by measuring the discharge current and applied potential waveform and the power dissipation. Apatite formation on the surface of the DBD-treated and untreated samples after soaking in simulated body fluid (SBF) at $37^{\circ}C$ is characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), inductively coupled plasma (ICP-OES) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS). We observed a marked increase in the amount of apatite deposited on the surface of the treated plasma samples than those of the untreated ones, indicating that DBD plasma treatment is an efficient method and capable of modifying the surface of glass beside effectively transforming it into highly bioactive materials.

Evaluation of antibacterial activity and cytotoxic effects of green AgNPs against Breast Cancer Cells (MCF 7)

  • Vizhi, Dhandapani Kayal;Supraja, Nookala;Devipriya, Anbumani;Tollamadugu, Naga Venkata Krishna Vara Prasad;Babujanarthanam, Ranganathan
    • Advances in nano research
    • /
    • 제4권2호
    • /
    • pp.129-143
    • /
    • 2016
  • The present work reports a facile, rapid and an eco-friendly method for the synthesis of silver nanoparticles using Luffa acutangula (L. acutangula) leaves extract and their antibacterial and cytotoxic effects. The synthesized silver nanoparticles (AgNPs) were characterized by UV-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction analysis (XRD). Additionally the topography, morphology and the elemental composition of the particles were determined by Scanning Electron Microscopy (SEM) and Energy dispersive spectrophotometric (EDS) technique and the measured particle sizes from SEM micrographs are in the range of 12.5 to 24.5nm. The in-vitro antimicrobial activity of the synthesized nanoparticles was high against gram positive Staphylococcus aureus and moderate against gram negative Escherichia coli and Pseudomonas aeruginosa strains. Further, the cytotoxic effects of synthesized AgNPs were evaluated against Human Breast Cancer (MCF 7) cell line.

Characterization of recycled polycarbonate from electronic waste and its use in hydraulic concrete: Improvement of compressive performance

  • Colina-Martinez, Ana L. De la;Martinez-Barrera, Gonzalo;Barrera-Diaz, Carlos E.;Avila-Cordoba, Liliana I.;Urena-Nunez, Fernando
    • Advances in concrete construction
    • /
    • 제5권6호
    • /
    • pp.563-573
    • /
    • 2017
  • Transparency, excellent toughness, thermal stability and a very good dimensional stability make Polycarbonate (PC) one of the most widely used engineering thermoplastics. Polycarbonate market include electronics, automotive, construction, optical media and packaging. One alternative for reducing the environmental pollution caused by polycarbonate from electronic waste (e-waste), is to use it in cement concretes. In this work, physical and chemical characterization of recycled polycarbonate from electronic waste was made, through the analysis by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and scanning electron microscope (SEM). Then cement concrete was made with Portland cement, sand, gravel, water, and this recycled polycarbonate. Specimens without polycarbonate were produced for comparison purposes. The effect of the particle sizes and concentrations of recycled polycarbonate within the concrete, on the compressive strength and density was studied. Results show that compressive strength values and equilibrium density of concrete depend on the polycarbonate particle sizes and its concentrations; particularly the highest compressive strength values were 20% higher than that for concrete without polycarbonate particles. Moreover, morphological, structural and crystallinity characteristics of recycled polycarbonate, are suitable for to be mixed into concrete.

Synthesis of LaMnO3-Diamond Composites and Their Photocatalytic Activity in the Degradation of Weak Acid Red C-3GN

  • Huang, Hao;Lu, Benqian;Liu, Yuanyuan;Wang, Xeuqian;Hu, Jie
    • Nano
    • /
    • 제13권10호
    • /
    • pp.1850121.1-1850121.11
    • /
    • 2018
  • In this study, a series of $LaMnO_3$-diamond composites with varied $LaMnO_3$ mass contents supported on micro-diamond have been synthesized using a sol-gel method. The as-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and the Fourier transform infrared spectra (FTIR). Meanwhile, the photocatalytic performances were also tested by photoluminescence (PL) spectroscopy, ultraviolet-visible diffuse reflection spectra (UV-Vis DRS) and the degradation of weak acid red C-3GN (RC-3GN). Results show that the peak position of $LaMnO_3$ is shifted to low angle after the introduction of diamond, and perovskite particles uniformly distributed on the surface of diamond, forming a network structure, which can increase the active sites and the absorption of dye molecules. When the mass ratio of $LaMnO_3$ and diamond is 1:2 (LMO-Dia-2), the composite shows the most excellent photocatalytic activity. This result offers a sample route to enlarge the range of the application of micro-diamond and provide a new carrier for perovskite photocatalysts.