• Title/Summary/Keyword: Fourier Integration Method

Search Result 42, Processing Time 0.029 seconds

Target Velocity Estimation using FFT Method

  • Lee, Kwan Hyeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2020
  • This paper studied a method of estimating target information using a radar in wireless communication. Position information on the target can be estimated angle, distance and velocity. The velocity information can be estimated since the Doppler frequency is changed in the moving target. The signal incident on the receiving array antenna is multiplied by the delay time and the reference signal to represent the output signal. This output signal is estimated by applying FFT (Fast Fourier Transform) after calculating signal correlation through correlation integrator. Since the output signal must be calculated within the correlator, it should be processed with the Dwell time. The correlation signal of the correlation integrator outside this Dwell time is indicated by the velocity measurement error. The FFT is applied to the signal that has passed through the correlated integrator in order to estimate the distance of the signal. The Doppler resolution must be improved because the FFT estimates target information using the Doppler information. The Doppler resolution decreases with increasing the integration time. The velocity information estimation should have no spread of the velocity. As a result of the simulation, there was no spread of the target velocity in this study.

Spatial Modulation of Nonlinear Waves due to Bragg Reflection (Bragg 반사에 의한 비선형파의 공간적 파형변조해석)

  • Choi, Ka-Ram;Koo, Weon-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.34-40
    • /
    • 2010
  • Bragg reflection of nonlinear waves is simulated by a 2D fully nonlinear numerical wave tank (NWT). The developed NWT was based on the Boundary Element Method (BEM) with potential theory and the mixed Eulerian-Lagrangian (MEL) time marching scheme with Runge-Kutta 4th-order time integration. A spatial variation of wave elevations and their Fourier amplitudes of each component are compared to investigate the effect of sea bottom ripples and their relative heights. The incident waves over an undulated sea bottom are partially reflected and changed to partial standing waves due to Bragg reflection. The present results are verified with linear calculations and experimental data. It is found that the 1st-order wave component is mainly affected by Bragg reflection and its spatial modulation is significant in front of the bottom ripples.

Multiple unequal cracks between an FGM orthotropic layer and an orthotropic substrate under mixed mode concentrated loads

  • M. Hassani;M.M. Monfared;A. Salarvand
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.535-546
    • /
    • 2023
  • In the present paper, multiple interface cracks between a functionally graded orthotropic coating and an orthotropic half-plane substrate under concentrated loading are considered by means of the distribution dislocation technique (DDT). With the use of integration of Fourier transform the problem is reduced to a system of Cauchy-type singular integral equations which are solved numerically to compute the dislocation density on the surfaces of the cracks. The distribution dislocation is a powerful method to calculate accurate solutions to plane crack problems, especially this method is very good to find SIFs for multiple unequal cracks located at the interface. Hence this technique allows considering any number of interface cracks. The primary objective of this paper is to investigate the effects of the interaction of multiple interface cracks, load location, material orthotropy, nonhomogeneity parameters and geometry parameters on the modes I and II SIFs. Numerical results show that modes I/II SIFs decrease with increasing the nonhomogeneity parameter and the highest magnitude of SIF occurs where distances between the load location and crack tips are minimal.

Stability of the Divergent Barotropic Rossby-Haurwitz Wave (발산 순압 로스비-하우어비츠 파동의 안정성)

  • Jeong, Han-Byeol;Cheong, Hyeong-Bin
    • Journal of the Korean earth science society
    • /
    • v.37 no.2
    • /
    • pp.107-116
    • /
    • 2016
  • Stability of the barotropic Rossby-Haurwitz wave is investigated using the numerical models on the global domain. The Rossby-Haurwitz wave under investigation is composed of the basic zonal flow of super-rotation and a finite amplitude spherical harmonic wave. The Rossby-Haurwitz wave is given as either steady or unsteady wave by adjusting the strength of the super-rotating zonal flow. Stability as well as the growth rate of the wave in the numerical simulation is determined by comparing the perturbation amplitude at two different time stages. Unstable modes of the Rossby-Haurwitz wave exhibited a horizontal structure composing of various zonal-wavenumber components. The vorticity perturbation for some modes showed a discontinuity around the area of weak flow, which was found robust regardless of the horizontal resolution of the model. Fourier finite element model was shown to generate the unstable mode in earlier stage of the time integration due to less accuracy compared to the spherical harmonic spectral model. Taking the overall accuracy of the models into consideration, the time by which the unstable mode begin to dominate over the spherical harmonic wave was estimated.

Undamped Dynamic Response of Anisotropic Laminated Composite Plates and Shell Structures using a Higher-order Shear Deformation Theory (비등방성 복합적층판 및 쉘의 고차전단변형을 고려한 비감쇄 동적응답)

  • Yoon, Seok Ho;Han, Seong Cheon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.333-340
    • /
    • 1997
  • This paper will expand the third-order shear deformation theory by the double-Fourier series and reduce to the solution of a system of ordinary differential equations in time, which are integrated numerically using Newmark's direct integration method and clarify the undamped dynamic responses for the cross-ply and antisymmetric angle-ply laminated composite plates and shells with simply supported boundary condition. Numerical results for deflections are presented showing the effect of side-to-thickness ratio, aspect ratio, material anisotropy, and lamination scheme.

  • PDF

Analytical p-version finite elements and application in analyses of structural collision protection

  • Zhu, B.;Chen, Y.M.;Leung, A.Y.T.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.487-504
    • /
    • 2006
  • Several new versatile two-dimensional p-version finite elements are developed. The element matrices are integrated analytically to guarantee the accuracy and monotonic convergence of the predicted solutions of the proposed p-version elements. The analysis results show that the convergence rate of the present elements is very fast with respect to the number of additional Fourier or polynomial terms in shape functions, and their solutions are much more accurate than those of the linear finite elements for the same number of degrees of freedom. Additionally, the new p-version plate elements without the reduced integration can overcome the shear locking problem over the conventional h-version elements. Using the proposed p-version elements with fast convergent characteristic, the elasto-plastic impact of the structure attached with the absorber is simulated. Good agreement between the simulated and experimental results verifies the present p-version finite elements for the analyses of structural dynamic responses and the structural elasto-plastic impact. Further, using the elasto-plastic impact model and the p-version finite element method, the absorber of the T structure on the Qiantang River is designed for its collision protection.

Hybrid perfectly-matched-layers for transient simulation of scalar elastic waves

  • Pakravan, Alireza;Kang, Jun Won;Newtson, Craig M.;Kallivokas, Loukas F.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.685-705
    • /
    • 2014
  • This paper presents a new formulation for forward scalar wave simulations in semi-infinite media. Perfectly-Matched-Layers (PMLs) are used as a wave absorbing boundary layer to surround a finite computational domain truncated from the semi-infinite domain. In this work, a hybrid formulation was developed for the simulation of scalar wave motion in two-dimensional PML-truncated domains. In this formulation, displacements and stresses are considered as unknowns in the PML domain, while only displacements are considered to be unknowns in the interior domain. This formulation reduces computational cost compared to fully-mixed formulations. To obtain governing wave equations in the PML region, complex coordinate stretching transformation was introduced to equilibrium, constitutive, and compatibility equations in the frequency domain. Then, equations were converted back to the time-domain using the inverse Fourier transform. The resulting equations are mixed (contain both displacements and stresses), and are coupled with the displacement-only equation in the regular domain. The Newmark method was used for the time integration of the semi-discrete equations.

Matching Points Extraction Between Optical and TIR Images by Using SURF and Local Phase Correlation (SURF와 지역적 위상 상관도를 활용한 광학 및 열적외선 영상 간 정합쌍 추출)

  • Han, You Kyung;Choi, Jae Wan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.81-88
    • /
    • 2015
  • Various satellite sensors having ranges of the visible, infrared, and thermal wavelengths have been launched due to the improvement of hardware technologies of satellite sensors development. According to the development of satellite sensors with various wavelength ranges, the fusion and integration of multisensor images are proceeded. Image matching process is an essential step for the application of multisensor images. Some algorithms, such as SIFT and SURF, have been proposed to co-register satellite images. However, when the existing algorithms are applied to extract matching points between optical and thermal images, high accuracy of co-registration might not be guaranteed because these images have difference spectral and spatial characteristics. In this paper, location of control points in a reference image is extracted by SURF, and then, location of their corresponding pairs is estimated from the correlation of the local similarity. In the case of local similarity, phase correlation method, which is based on fourier transformation, is applied. In the experiments by simulated, Landsat-8, and ASTER datasets, the proposed algorithm could extract reliable matching points compared to the existing SURF-based method.

Verification on the Calculated Geoelectric Field on Power Grid during Geomagnetic Disturbances (지자기 교란으로 인한 전력망 유도전기장 예상값 검증)

  • Park, Sung Won;Yoo, Chung-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.94-100
    • /
    • 2015
  • Coronal mass ejection (CME) released due to solar flare explosion cause geomagnetic disturbance. The induced current by massive geomagnetic disturbance can cause damage to the transformer. The calculated geoelectric field is a major parameter of the geomagnetically induced current (GIC). The method applying a Fourier transform has a high accuracy but it needs all data measured for 24 hours. And the other method applying a integral equation can calculate in real time but it requires to check an accuracy. To reduce the gap between the calculated results of two methods, it adjusts the integration section. As a result, the correlation between two calculated geoelectric fields is high, and the event time and direction of the calculated current is the same as that of the measured current, and it's accuracy rate is above 92 percent.

Calculation of Deflection Using the Acceleration Data for Concrete Bridges (가속도 계측 자료를 이용한 콘크리트 교량의 처짐 산정)

  • Yun, Young Koun;Ryu, Hee Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.92-100
    • /
    • 2011
  • This paper describes a numerical modeling for deflection calculation using the natural frequency response that is measured acceleration response for concrete bridges. In the formulation of the dynamic deflection, the change amounts and the transformed responses about six kinds of free vibration responses are defined totally. The predicted response can be obtained from the measured acceleration data without requiring the knowledge of the initial velocity and displacement information. The relationship between the predicted response and the actual deflection is derived using the mathematical modeling that is induced by the process of a acceleration test data. In this study, in order to apply the proposed response predicted model to the integration scheme of the natural frequency domain, the Fourier Fast Transform of the deflection response is separated into the frequency component of the measured data. The feasibility for field application of the proposed calculation method is tested by the mode superposition method using the PSC-I bridges superstructures under several cases of moving load and results are compared with the actually measured deflections using transducers. It has been observed that the proposed method can asses the deflection responses successfully when the measured acceleration signals include the vehicle loading state and the free vibration behavior.