• 제목/요약/키워드: Four-Point Bending

검색결과 273건 처리시간 0.024초

치과용(齒科用) 아말감의 파괴인성(破壞靭性)에 관한 연구(硏究) (A STUDY ON THE FRACTURE TOUGHNESS OF DENTAL AMALGAMS)

  • 허현도;김영해
    • Restorative Dentistry and Endodontics
    • /
    • 제15권1호
    • /
    • pp.20-32
    • /
    • 1990
  • The plane strain fracture toughness of a material characterize the resistance to fracture in the presence of a sharp crack under severe tensile condition. Fracture toughness can be determined by indentation method. The purpose of this study was to investigate the fracture toughness of dental amalgams by measuring the plane strain fracture toughness and the fracture toughness from indentation method. Two conventional and four high copper amalgam alloys were employed for this study. The amalgams were prepared according to the A.D.A. spec. No. 1 and inserted into the specially designed mould with the single edge notch specimen to use in 3-point bending method. The specimens (20mm long, 4mm wide, 2mm thick) were stored at $37^{\circ}C$ for 1 week, and tested in 3-point bending by means of Instron at a cross-head speed of 1mm/min. In indentation method, the specimens were made in same manner as single edge notch specimens. The test was conducted with Vickers hardness tester at 10kg load. The following results were obtained. 1. The plane strain fracture toughness and the fracture toughness from indentation method were higher in the low copper amalgams than the high copper amalgams. 2. In high copper amalgams, the fracture toughness of amalgams decreases according as the copper contents increase. 3. In similar copper contents, the single composition amalgams have a higher fracture toughness than the admixed amalgams.

  • PDF

실배관 파괴특성 평가에 관한 연구 (A Study on the Evaluation of the Pipe Fracture Characteristic)

  • 박재실;김영진;석창성
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.107-114
    • /
    • 2005
  • In order to analyze the elastic-plastic fracture behavior of a structure, the fracture resistance curve of the material should be known first. The standard CT specimen was used to obtain the fracture resistance curves of a piping system. However, it is known that the fracture resistance curve by the standard CT specimen is very conservative to evaluate the integrity of a structure. Also the fracture resistance curve is effected by the specimen geometry and the dimensions because of the constraint effect. The objective of this paper is to be certain the conservativeness of the fracture resistance curve by the standard CT specimen and to provide an additional safety margin. For these, the fracture tests using a real pipe specimen and the standard CT specimen test were performed. A 4-point bending jig was manufactured for the pipe test and the direct current potential drop method was used to measure the crack extension and the length for the pipe test. Also finite element analyses were performed with a CT specimen and a pipe in order to prove the additional safety margin. From the result of tests and analyses of the pipe and the standard CT specimen, it was observed that the fracture analysis with the standard CT specimen is conservative and the additional safety margin was proved.

Behavior of recycled steel fiber-reinforced concrete beams in torsion- experimental and numerical approaches

  • Mohammad Rezaie Oshtolagh;Masood Farzam;Nima Kian;Hamed Sadaghian
    • Computers and Concrete
    • /
    • 제32권2호
    • /
    • pp.173-184
    • /
    • 2023
  • In this study, mechanical, flexural post-cracking, and torsional behaviors of recycled steel fiber-reinforced concrete (RSFRC) incorporating steel fibers obtained from recycling of waste tires were investigated. Initially, three concrete mixes with different fiber contents (0, 40, and 80 kg/m3) were designed and tested in fresh and hardened states. Subsequently, the flexural post-cracking behaviors of RSFRCs were assessed by conducting three-point bending tests on notched beams. It was observed that recycled steel fibers improve the post-cracking flexural behavior in terms of energy absorption, ductility, and residual flexural strength. What's more, torsional behaviors of four RSFRC concrete beams with varying reinforcement configurations were investigated. The results indicated that RSFRCs exhibited an improved post-elastic torsional behaviors, both in terms of the torsional capacity and ductility of the beams. Additionally, numerical analyses were performed to capture the behaviors of RSFRCs in flexure and torsion. At first, inverse analyses were carried out on the results of the three-point bending tests to determine the tensile functions of RSFRC specimens. Additionally, the applicability of the obtained RSFRC tensile functions was verified by comparing the results of the conducted experiments to their numerical counterparts. Finally, it is noteworthy that, despite the scatter (i.e., non-uniqueness) in the aspect ratio of recycled steel fiber (as opposed to industrial steel fiber), their inclusion contributed to the improvement of post-cracking flexural and torsional capacities.

Effect of the GFRP wrapping on the shear and bending Behavior of RC beams with GFRP encasement

  • Ozkilic, Yasin Onuralp;Gemi, Lokman;Madenci, Emrah;Aksoylu, Ceyhun;Kalkan, İlker
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.193-204
    • /
    • 2022
  • The need for establishing the contribution of pultruded FRP encasements and additional FRP wraps around these encasements to the shear strength and load-deflection behavior of reinforced concrete beams is the main motivation of the present study. This paper primarily focuses on the effect of additional wrapping around the composite beam on the flexural and shear behavior of the pultruded GFRP (Glass Fiber Reinforced Polymer) beams infilled with reinforced concrete, taking into account different types of failure according to av/H ratio (arch action, shear-tension, shear-compression and pure bending). For this purpose, nine hybrid beams with variable shear span-to-depth ratio (av/H) were tested. Hybrid beams with 500 mm, 1000 mm, and 1500 mm lengths and cross-sections of 150x100 mm and 100x100 mm were tested under three-point and four-point loading. Based on the testing load-displacement relationship, ductility ratio, energy dissipation capacity of the beams were evaluated with comprehensive macro damage analysis on pultruded GFRP profile and GFRP wrapping. The GFRP wraps were established to have a major contribution to the composite beam ductility (90-125%) and strength (40-75%) in all ranges of beam behavior (shear-dominated or dominated by the coupling of shear and flexure). The composite beams with wraps were showns to reach ductilities and strength values of their counterparts with much greater beam depth.

Analytical solutions to magneto-electro-elastic beams

  • Jiang, Aimin;Ding, Haojiang
    • Structural Engineering and Mechanics
    • /
    • 제18권2호
    • /
    • pp.195-209
    • /
    • 2004
  • By means of the two-dimensional basic equations of transversely isotropic magneto-electro-elastic media and the strict differential operator theorem, the general solution in the case of distinct eigenvalues is derived, in which all mechanical, electric and magnetic quantities are expressed in four harmonic displacement functions. Based on this general solution in the case of distinct eigenvalues, a series of problems is solved by the trial-and-error method, including magneto-electro-elastic rectangular beam under uniform tension, electric displacement and magnetic induction, pure shearing and pure bending, cantilever beam with point force, point charge or point current at free end, and cantilever beam subjected to uniformly distributed loads. Analytical solutions to various problems are obtained.

Flexural behaviour of square UHPC-filled hollow steel section beams

  • Guler, Soner;Copur, Alperen;Aydogan, Metin
    • Structural Engineering and Mechanics
    • /
    • 제43권2호
    • /
    • pp.225-237
    • /
    • 2012
  • This paper presents an experimental investigation of the flexural behavior of square hollow steel section (HSS) beams subjected to pure bending. Totally six unfilled and nine ultra high performance concrete (UHPC)-filled HSS beams were tested under four-point bending until failure. The effects of the steel tube thickness, the yield strength of the steel tube and the strength of concrete on moment capacity, curvature, and ductility of UHPC-filled HSS beams were examined. The performance indices named relative ductility index (RDI) and strength increasing factor (SIF) were investigated with regard to different height-to-thickness ratio of the specimens. The flexural strengths obtained from the tests were compared with the values predicted by Eurocode 4, AISC-LRFD and CIDECT design codes. The results showed that the increase in the moment capacity and the corresponding curvature is much greater for thinner HSS beams than thicker ones. Eurocode 4 and AISC-LRFD predict the ultimate moment capacity of the all UHPC-filled HSS beams conservatively.

탄소 섬유시트로 보강된 실제크기 철근 콘크리트 보의 휨 거동에 대한 실험적 연구 (An experimental study for bending behavior of real size RC beams strengthened with carbon fiber sheets)

  • 김성도;성진욱
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.574-580
    • /
    • 2009
  • This study is investigate the bending behavior of real size RC beams strengthened with carbon fiber sheets. For experimental study, 1 control beam and 8 strengthened beams of real size(4 NU-beams and 4 U-beams) are tested and compared. NU-beam has not a V-shaped band and V-beam has a V-shaped band. The variables of experiment are composed of the number of carbon fiber sheets, the existence of U-shaped band, and four point loading, etc. The experimental results showed that the strengthening system with U-shaped band controls the premature debonding and provides a more ductile failure mode than the strengthening system without V-shaped band. It can be found from the load-deflection curves that as the number of fiber sheets is increased, the maximum strength and the flexural rigidity is increased. For the strengthening method with carbon fiber sheets of the real size RC beams, it is required the finding a solution to the bonding problem.

  • PDF

감육된 탄소강배관의 변형과 파괴거동 (Deformation and Fracture Behavior of Wall Thinned Carbon Steel Pipes)

  • 안석환;남기우
    • 한국해양공학회지
    • /
    • 제20권4호
    • /
    • pp.17-23
    • /
    • 2006
  • Monotonic four-point bending tests were conducted on straight pipe specimens, 102 mm in diameter with local wall thinning, in order to investigate the effects of the depth, shape, and location of wall thinning on the deformation and failure behavior of pipes. The local wall thinning simulated natural erosion/corrosion metal loss. The deformation and fracture behavior of the straight pipes with local wall thinning was compared with that of non wall-thinning pipes. The failure modes were classifiedas local buckling, ovalization, or crack initiation, depending on the depth, shape, and location of the local wall thinning. Three-dimensional elasto-plastic analyses were carried out using the finite element method. The deformation and failure behavior, simulated by finite element analyses, coincided with the experimental results.

Structural performance of recycled aggregates concrete sourced from low strength concrete

  • Goksu, Caglar;Saribas, Ilyas;Binbir, Ergun;Akkaya, Yilmaz;Ilki, Alper
    • Structural Engineering and Mechanics
    • /
    • 제69권1호
    • /
    • pp.77-93
    • /
    • 2019
  • Although much research has been carried out using recycled aggregates sourced from normal strength concrete, most of the buildings to be demolished are constructed with low strength concrete. Therefore, the properties of the concrete incorporating recycled aggregates, sourced from the waste of structural elements cast with low strength concrete, were investigated in this study. Four different concrete mixtures were designed incorporating natural and recycled aggregates with and without fly ash. The results of the mechanical and durability tests of the concrete mixtures are presented. Additionally, full-scale one-way reinforced concrete slabs were cast, using these concrete mixtures, and subjected to bending test. The feasibility of using conventional reinforced concrete theory for the slabs made with structural concrete incorporating recycled aggregates was investigated.

취성/연성 파괴에 대한 수명예측 모델 및 신뢰성 설계 (Development of Reliability Design Technique and Life Prediction Model for Electronic Components)

  • 김일호;이순복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1740-1743
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. First, cyclic bending tests were performed using the micro-bending tester. A four-point bending test method was adopted, because it induces uniform stress fields within a loading span. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. The pseudo-power cycling method makes up for the weak points in a power cycling and a chamber cycling method. Two compositions of solder are tested in all test condition, one is lead-free solder (95.5Sn4.0Ag0.5Cu) and the other is eutectic lead-contained solder (63Sn37Pb). In the cyclic bending test, the solder that exhibits a good reliability can be reversed depending on the load conditions. The lead-contained solders have a longer fatigue life in the region where the applied load is high. On the contrary, the lead-free solder sustained more cyclic loads in the small load region. A similar trend was detected at the thermal cycling test. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. A constitutive model which includes both creep and plasticity was employed. Thermal fatigue was occurred due to the creep. And plastic deformation is main damage for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF