• Title/Summary/Keyword: Foundry material

Search Result 202, Processing Time 0.032 seconds

Effects of Process Parameter on Alpha-Case Formation of Ti and TiAl castings (Ti 및 TiAl 주조재의 ${\alpha}$-case 형성에 미치는 공정변수에 대한 영향)

  • Lee, Sang-Hwa;Kim, Myoung-Gyun;Sung, Si-Yuong;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.23 no.3
    • /
    • pp.137-146
    • /
    • 2003
  • The main purpose of this study is to investigate the effects of process parameter on alpha-case formation of Ti and TiAl castings. The previous studies showed that the molten titanium is excessively reactive to the refractory oxide mold, resulting in alpha-caes of the titanium castings regardless of composition of titanium alloys. However, the behavior of the alpha-case formation of TiAl alloy is not consistent with conventional titanium alloy. In order to investigate the alpha-case formation of Ti and TiAl castings with process parameter, especially the associated factors of investment mold such as mold material, binder and mold preheating temperature. An attempt has been made to characterize the alpha-case of titanium casting by using optical microscope, EDS, XRD, EMPA and hardness profiles. The formation of the alpha-case on the surface of pure titanium during investment casting was rather by that of solid solution with metallic element from mold material. The required mold strength was obtained with $CaZrO_3$ because of the possibility of using water soluble binder. However, the separation phenomenon between facing and back-up mold materials should be considered. The interfacial reaction of TiAl alloy showed different behavior from that of pure titanium and $Al_2O_3$ was best mold materials. The effect of binder as well as mold material on the formation of alpha-case was significant.

Study on the Austenite Formation and Mechanical Properties of AGI (Austempered Gray Cast Iron) According to Aluminum Content (알루미늄 함량에 따른 AGI (Austempered Gray Cast Iron)의 오스테나이트 형성 및 기계적 특성에 관한 연구)

  • Kim, Dong-Hyuk
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.543-549
    • /
    • 2021
  • Aluminum cast iron has excellent oxidation resistance and good resistance to sulfide and corrosion. Compared to Ti and Ni alloys, it is expected to be a substitute material for structural materials and stainless steels because it is relatively inexpensive to use Fe, which is a non-strategic element. This results in a weight reduction effect of about 30% as compared to the use of stainless steel. With regard to aluminum as an alloying material, it is an element that has been widely used for the alloying of cast iron in recent years. Practical use has been delayed owing to the resulting lack of ductility at room temperature and the sharp decrease in the strength above 600℃ of this alloy, however. The cause of the weak room temperature ductility is known to be environmental embrittlement by hydrogen, and the addition of various alloying elements has been attempted in order to mitigate these shortcomings. Although alloying elements such as vanadium, chromium, and manganese are mainly used to increase the hardness and wear resistance of gray cast iron, the price of finished products containing these elements and the problems associated with alloys with this material impose many limitations.

An example of automatic cutting ROBOT system development of casting material (로보트를 적용한 주물소재의 자동절단 시스템 개발 사례)

  • 박태갑;이봉환;여창모
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1161-1168
    • /
    • 1991
  • The purpose of this project is to develop an automatic cutting robot system of cast steel, which raise productivity with improvement of working circumstances, overcomming labor deficiency, reduction of process and cycle time by applying cutting automation at inferior working circumstances and condition of a foundry. This system consisted of a 5 DOF tool system, an improved conveyer system and the HR-8608 ROBOT, makes it possible to get the reduction of 12 manpowers and 30% productivity up.

  • PDF

Engineering Properties of Fly Ash-WFS Mixed Materials as a Flow able Backfill (유동성 뒷채움재로 사용하기 위한 플라이에쉬-폐주물사 혼합재료의 특성 연구)

  • 이관호;이인모;조재윤;윤여준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.489-496
    • /
    • 1999
  • The objective of this study is to present engineering properties required in use of co-mixtures of fly ash and WFS(Waste Foundry Sand)'s, which are Presently used as fill or (lovable backfill. The fly ash, generated at the Tae-An thermoelectric power plant was used in this research and was classified as Class F. Green Sand, Furane Sand, and Coated Sand, which had been used at a foundry located in Pusan, were used. Laboratory experiments were peformed to obtain the physical properties of the co-mixture of fly ash and WFS. The range of permeability for all the co-mixtures was from 3.0×10/sup -3/㎝/s to 6.0×10/sup -5/㎝/s. The unconfined strength of the 7-day cured specimens composed of Green Sand reached 94% of that of 28-day cured specimens but for the 7-day cured specimens composed of, respectively, Furnace Sand and Coated Sand, only 64% and 66% of the strength of the 28-day cured specimens were reached. Results of the consolidated-untrained triaxial test showed that the specimens composed of Furnace Sand showed a distinct increase of the internal friction angle, while the other specimens showed negligible increase. In the case of 28-day cured specimens, specimens composed of Furnace Sand showed an internal friction angle of 41.8°, while specimens of Green and Coated Sand showed those of 33.5° and 35.0°, respectively. From the shrinkage test, the shrinkage ratios of all specimens did not exceed 0.25%.

  • PDF

Evaluation of Rutting Behavior of Hot Mix Asphalt using Slag and Waste Foundry Sand as Asphalt Paving Materials (슬래그와 폐주물사를 이용한 아스팔트 혼합물의 소성변형특성에 관한 연구)

  • Lee, Kwan-Ho;Cho, Jae-Yoon;Jeon, Joo-Yong
    • 한국도로학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.89-92
    • /
    • 2002
  • The objective of this research is to evaluate engineering properties of recycled aggregates, slag as coarse & fine aggregate and waste foundry sand(WFS) as fine aggregate, in hot mix asphalt(HMA). In this research, soundness, gradation and particle analysis, abrasion, specific gravity and absorption test were carried out. The optimum asphalt binder content(OAC) for various HMA combinations of recycled aggregate was determined by Marshall Mix Design. The ranges determined is between 7.2% and 7.5%. Indirect tensile test, resilient modulus test, creep test were carried out for characterization of rutting behavior of various combination of HMA. Judging from the limited tests, the HMA with recycled aggregates is not as good rutting resistance as the HMA with common aggregates. After finishing the Wheel tracking test, the application or feasibility for the use of recycled aggregate as asphalt paving material will be determined.

  • PDF

Effects of Heat-Treatment and the Addition of Copper on the Processing Window of 3.6wt%C-2.5wt%Si Austempered Ductile Cast Iron (3.6wt%C-2.5wt%Si 오스템퍼드 구상흑연주철의 프로세싱 윈도우에 미치는 열처리 및 구리 첨가의 영향)

  • Kwon, Do-Young;Oh, Jeong-Hyeok;Kim, Gi-Yeob;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.41 no.4
    • /
    • pp.331-341
    • /
    • 2021
  • The effects of austempering temperature, austenitizing temperature and time, added copper content and prior heat-treatment on the processing window of 3.6wt%C-2.5wt%Si ductile cast iron during austempering. The maximum processing window was obtained at 350℃ of austempering temperature. The processing window was increased with increased austenitizing temperature from 850 to 900℃; however, it decreased at 950℃. The processing window was increased with increased austenitizing time from 0.5 to 2 hours and rather decreased for 4 hours. The optimum condition of austenitizing was obained at 900℃ for 2 hours. The processing window was increased with copper content added in the range of 0.0~0.8wt%. The processing window was increased by prior normalizing heat-treatment and decreased by prior annealing in comparison with that for the as-cast state,

Development of Rapid Tooling using Investment Casting & R/P Master Model (R/P 마스터 모델을 활용한 정밀주조 부품 및 쾌속금형 제작 공정기술의 개발)

  • Jeong, Hae-Do;Kim, Hwa-Young
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.330-335
    • /
    • 2000
  • Functional metal prototypes are often required in numerous industrial applications. These components are typically needed in the early stage of a project to determine form, fit and function. Recent R/P(Rapid Prototyping) part are made of soft materials such as plastics, wax, paper, these master models cannot be employed durable test in real harsh working environment. Parts by direct metal rapid tooling method, such as laser sintering, by now are hard to get net shape, pores of the green parts of powder casting method must be infiltrated to get proper strength as tool, and new type of 3D direct tooling system combining fabrication welding arc and cutting process is reported. But a system which can build directly 3D parts of high performance functional material as metal park would get long period of system development, massive investment and other serious obstacles, such as patent. In this paper, through the rapid tooling process as silicon rubber molding using R/P master model, and fabricate wax pattern in that silicon rubber mold using vacuum casting method, then we translated the wax patterns to numerous metal tool prototypes by new investment casting process combined conventional investment casting with rapid prototyping & rapid tooling process. With this wax-injection-mold-free investment casting, we developed new investment casting process of fabricating numerous functional metal prototypes from one master model, combined 3-D CAD, R/P and conventional investment casting and tried to expect net shape measuring total dimension shrinkage from R/P pare to metal part.

  • PDF

On-chip Inductor Modeling in Digital CMOS technology and Dual Band RF Receiver Design using Modeled Inductor

  • Han Dong Ok;Choi Seung Chul;Lim Ji Hoon;Choo Sung Joong;Shin Sang Chul;Lee Jun Jae;Shim SunIl;Park Jung Ho
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.796-800
    • /
    • 2004
  • The main research on this paper is to model on-chip inductor in digital CMOS technology by using the foundry parameters and the physical structure. The s-parameters of a spiral inductor are extracted from the modeled equivalent circuit and then compared to the results obtained from HFSS. The structure and material of the inductor used for modeling in this work is identical with those of the inductor fabricated by CMOS process. To show why the modeled inductor instead of ideal inductor should be used to design a RF system, we designed dual band RF front-end receiver and then compared the results between when using the ideal inductor and using the modeled inductor.

  • PDF

Evaluation of Metal-mold Reactions and Fluidity of TiAl Alloys (TiAl 합금의 주형계면반응 및 유동성 평가)

  • Lee, Sang-Hwa;Sung, Si-Young;Choi, Bong-Jae;Kim, Myoung-Gyun;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.26 no.2
    • /
    • pp.98-103
    • /
    • 2006
  • Metal-mold reactions between investment mold and TiAl alloys were investigated for the economic net-shape forming of TiAl alloys. The effect of mold preheating temperatures on the metal-mold reaction were investigated using a vacuum induction-melting furnace. In the case of TiAl alloys, there were no ${\alpha}$-case formation reactions. There were neither interstitial nor substitutional ${\alpha}$-case formations as TiAl alloys have both negligible solubility of oxygen and low activity in molten states. The fluidity of TiAl alloys increases with mold preheating temperature since they have a peritectic reaction that appears in the form of envelope, surrounding each particles of the primary constituent. The results of the investment casting of TiAl alloys confirm that the casting route in our study can be an effective approach for the economic net-shape forming of TiAl alloys.

Fabrication and Mechanical Properties of TiNi/6061Al Smart Composite by Permanent Mold Casting (금형주조법을 이용한 TiNi/6061Al 지적복합재료의 제조 및 기계적 특성)

  • Kim, Soon-Kook;Lee, Jun-Hee;Yun, Doo-Pyo;Park, Young-Chul;Lee, Gyu-Chang;Kim, Young-Hee
    • Journal of Korea Foundry Society
    • /
    • v.18 no.6
    • /
    • pp.534-540
    • /
    • 1998
  • 6061Al-matrix composite with TiNi shape memory fiber as reinforcement has been fabricated by Permanent Mold Casting to investigate the mechanical properties of the smart composites. The composites have showed good interface bonding as a result of the analysis of SEM and EDX. The smartness of composite is given due to the shape memory effect of the TiNi fiber which generates compressive residual stresses in the matrix material when heated after being prestrained. The tensile strength of the composites was tested at temperatures between $90^{\circ}C$ and room temperature with increasing amount of pre-strain, and it showed that the tensile strength at $90^{\circ}C$ was higher than that of the room temperature. Especially, the tensile strength of the composite increases with increasing pre-strain. It showed that hardness of matrix was higher than that of common 6061Al alloy.

  • PDF