• Title/Summary/Keyword: Foundation structure

Search Result 1,450, Processing Time 0.102 seconds

해상풍력 하부구조물 하중영향평가 및 해석기술연구 (A study on load evaluation and analysis for foundation of the offshore wind turbine system)

  • 권대용;박현철;정진화;김용천;이승민
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.184.2-184.2
    • /
    • 2010
  • With growing of wind turbine industry, offshore wind turbine system is getting more attention in recent years. Foundation of the offshore wind turbine plays a key role in stability of whole system. In this work, 5MW NREL reference wind turbine with rated speed of 11.4m/s is used for load calculation. Wind loads and wave loads are evaluated using GH-Bladed (Garard Hassan) and FAST (NREL). Additionally, FE simulation is carried out to investigate the wave effect on the support structure. Meanwhile, this work is trying to systematize and optimize load cases simulation for foundation of wind turbine system.

  • PDF

Foundation Design Practice for Highrise Buildings in Korea

  • Kim, Sungho;Hong, Seunghyeun;Choi, Yongkyu
    • 국제초고층학회논문집
    • /
    • 제4권4호
    • /
    • pp.291-310
    • /
    • 2015
  • It is common for tall buildings in Korea to have a ground response that is highly sensitive to the behavior of the structure. Therefore, the geology of the ground needs to be carefully assessed and considered in the design process to accurately predict the performance of the foundation system. This paper sets out a systematic design approach and ground investigation methodology for the soil conditions frequently encountered in Korea. Various foundation design methods are introduced along with several case studies conducted in Korea.

해상풍력 터빈과 모노파일 하부기초를 연결하는 플랜지 방식 트랜지션 피스의 기본설계 (Basic Design of a Flange Connected Transition Piece between Offshore Wind Turbine and Monopile Foundation)

  • 이강희;박성규;김건호;황태규
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.160-168
    • /
    • 2020
  • Depending on the water depth and composition of seabed, there exist different alternatives for the wind turbine supporting structures. Among several types of the structures, the monopile foundation is the dominant solution for support structure, accounting for over 80% of the offshore wind turbines in Europe. To develop the monopile foundation suitable for domestic ocean environment, a basic design of a transition piece was carried out. This paper presents the design procedure of a flange connected transition piece and results of the structural safety assessment.

Seismic evaluation of fluid-elevated tank-foundation/soil systems in frequency domain

  • Livaoglu, R.;Dogangun, A.
    • Structural Engineering and Mechanics
    • /
    • 제21권1호
    • /
    • pp.101-119
    • /
    • 2005
  • An efficient methodology is presented to evaluate the seismic behavior of a Fluid-Elevated Tank-Foundation/Soil system taking the embedment effects into accounts. The frequency-dependent cone model is used for considering the elevated tank-foundation/soil interaction and the equivalent spring-mass model given in the Eurocode-8 is used for fluid-elevated tank interaction. Both models are combined to obtain the seismic response of the systems considering the sloshing effects of the fluid and frequency-dependent properties of soil. The analysis is carried out in the frequency domain with a modal analysis procedure. The presented methodology with less computational efforts takes account of; the soil and fluid interactions, the material and radiation damping effects of the elastic half-space, and the embedment effects. Some conclusions may be summarized as follows; the sloshing response is not practically affected by the change of properties in stiff soil such as S1 and S2 and embedment but affected in soft soil. On the other hand, these responses are not affected by embedment in stiff soils but affected in soft soils.

원심모형시험기를 활용한 통관기초형식에 대한 제방의 안전성 검토 (Stability evaluation of levee to foundation type of drainage construction in Using Geo-centrifuge)

  • 임은상;신동훈;김재홍;조성은
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.856-861
    • /
    • 2010
  • In recent days, the safety of the levee has been an issue because the levee has become bigger according to the Four-river Restoration Project and so on. The greater part of the levee damage has occurred in the interface between soils and the structures. Specially, the drainage construction crosses the levee keeps its settlement down in order to secure a grade of drainage. However, when the settlement isn't generated by using foundation such as pile, the levee is more likely to have leakage at the interface because the construction doesn't behave with soils. In our study, therefor, testing of the behavior of the levee having the drainage construction was carried out to clarify the effects of the foundation type of drainage construction.

  • PDF

해상풍력 하부구조물 하중영향평가 및 해석기술연구 (A Study on Load Evaluation and Analysis for Foundation of the Offshore Wind Turbine System)

  • 권대용;박현철;정진화;김용천;이승민
    • 신재생에너지
    • /
    • 제6권3호
    • /
    • pp.39-46
    • /
    • 2010
  • With growing of wind turbine industry, offshore wind energy is getting more attention in recent years. Among all the components of offshore wind turbines, the foundation of the offshore wind turbine plays a key role in stability of whole system. In this work, the 5 MW NREL reference wind turbine with rated speed of 11.4 m/s is used for load calculation. Wind and wave loads are calculated using GH-Bladed (Garard Hassan) and FAST (NREL). Additionally, FE simulation is carried out to investigate the wave effect on the support structure. Meanwhile, this work is to simulate systemic and optimized load cases for the foundation analysis of wind turbine system.

댐체-기초 경계 모델링에 따른 콘크리트댐의 지진 균열거동 (Effect of Dam-Foundation Boundary Modeling on Cracking Damage Behavior of Concrete Dams)

  • 이지호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.26-33
    • /
    • 2005
  • In this paper, a computational model for nonlinear crack damage analysis of concrete gravity dam-foundation boundary region subjected to earthquake loading is suggested. An enhanced model based on the Lee-Fenves plastic-damage model is used as the inelastic material model for a concrete dam structure and rock foundation. The suggested model is implemented numerically and used for computational earthquake simulation of Koyna dam, which was severly damaged from the strong earthquake in 1967. From the numerical result it is demonstrated that the suggested computational model can realistically represent crack initiation and propagation in the dam-foundation boundary region.

  • PDF

Contact 요소를 이용한 신.구 콘크리트의 비선형 해석 (Nonlinear Analysis with contact element between old and new concrete)

  • 조선규;이종선;정우철;이종신
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1050-1055
    • /
    • 2007
  • In the case of a rail road bridge extension work, especially single track to double track, the foundation of new substructure which supports the extended part of superstructure could be interfered by the exist foundation of an old bridge. When these two foundations are jointed to prevent such fatal effects of the structure as unequal subsidence of soil foundations, it is important to prove the structural behaviour of the joining surfaces between new foundation and old foundation. 3-Dimensional Finite Element Analysis Method have been studied for the solutions of the structural behaviour of the foundations. In this analysis, 'Contact Element' which allows the sliding of each adjoining member is used for the joint of the boundary surface of the old and new pier foundations. Furthermore, Material Nonlinear Behaviour Analysis also supports the accuracy of the result in this study because the foundations consist of concrete main bodies and reinforced steel bars. These detailed analyses secure the verification of the structural safety of the foundations in the extension work more firmly.

  • PDF

Natural stiffness matrix for beams on Winkler foundation: exact force-based derivation

  • Limkatanyu, Suchart;Kuntiyawichai, Kittisak;Spacone, Enrico;Kwon, Minho
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.39-53
    • /
    • 2012
  • This paper presents an alternative way to derive the exact element stiffness matrix for a beam on Winkler foundation and the fixed-end force vector due to a linearly distributed load. The element flexibility matrix is derived first and forms the core of the exact element stiffness matrix. The governing differential compatibility of the problem is derived using the virtual force principle and solved to obtain the exact moment interpolation functions. The matrix virtual force equation is employed to obtain the exact element flexibility matrix using the exact moment interpolation functions. The so-called "natural" element stiffness matrix is obtained by inverting the exact element flexibility matrix. Two numerical examples are used to verify the accuracy and the efficiency of the natural beam element on Winkler foundation.

경사지반에 위치한 교대기초의 원심모델링 (Centrifuge Modelling of Bridge Abutment Foundation on the Sloped Ground)

  • 유남재;전상현;홍영길
    • 산업기술연구
    • /
    • 제27권B호
    • /
    • pp.209-214
    • /
    • 2007
  • This paper is the research result about centrifuge model experiments of investigating the behavior of bridge abutment on the sloped ground. Ground condition of the studied site was the bridge abutment with pile foundation adjacent to the slope. The pile foundations was supported on the soft rocks covered with the embankment. Evaluating the behavior of such a complicate ground and structure conditions was not easy so that the centrifuge modelling was performed to find the overall behavior of them. Layout of centrifuge model experiment was simplified to simulate easily the actual behavior of very complicate site condition. Construction process in field such as ground excavation for footing foundation, installation of piles, placement of footing and bridge abutment, backfilling and surcharge loading eas duplicated in the centrifuge model experiment. Consequently, the stability of the piled bridge abutment adjacent to the slope of embankment was evaluated throughout centrifuge modelling.

  • PDF