• Title/Summary/Keyword: Foundation structure

Search Result 1,459, Processing Time 0.023 seconds

Seismic vulnerability of reinforced concrete building structures founded on an XPS layer

  • Koren, David;Kilar, Vojko
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.939-963
    • /
    • 2016
  • According to the new directives about the rational and efficient use of energy, thermal bridges in buildings have to be avoided, and the thermal insulation (TI) layer should run without interruptions all around the building - even under its foundations. The paper deals with the seismic response of multi-storeyed reinforced concrete (RC) frame building structures founded on an extruded polystyrene (XPS) layer placed beneath the foundation slab. The purpose of the paper is to elucidate the problem of buildings founded on a TI layer from the seismic resistance point of view, to assess the seismic behaviour of such buildings, and to search for the critical parameters which can affect the structural and XPS layer response. Nonlinear dynamic and static analyses were performed, and the seismic response of fixed-base (FB) and thermally insulated (TI) variants of nonlinear RC building models were compared. Soil-structure interaction was also taken into account for different types of soil. The results showed that the use of a TI layer beneath the foundation slab of a superstructure generally induces a higher peak response compared to that of a corresponding system without TI beneath the foundation slab. In the case of stiff structures located on firm soil, amplification of the response might be substantial and could result in exceedance of the superstructure's moment-rotation plastic hinge capacities or allowable lateral roof and interstorey drift displacements. In the case of heavier, slenderer, and higher buildings subjected to stronger seismic excitations, the overall response is governed by the rocking mode of oscillation, and as a consequence the compressive strength of the XPS could be insufficient. On the other hand, in the case of low-rise and light-weight buildings, the friction capacity between the layers of the applied TI foundation set might be exceeded so that sliding could occur.

Probabilistic Assessment of Seepage Stability of Soil Foundation under Water Retaining Structures by Fragility Curves (취약도 곡선에 의한 수리구조물 하부 지반의 확률론적 침투 안정성 평가)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.41-54
    • /
    • 2021
  • In this study, probabilistic steady seepage behavior of soil foundation beneath water retaining structures according to the location of cutoffs was studied. A Monte Carlo Simulation based on the random finite element method that considers the uncertainty and spatial variability of soil permeability was performed to evaluate the probabilistic seepage behavior. Fragility curves were developed by calculating the failure probability conditional on the occurrence of a given water level from the probability distribution obtained from Monte Carlo simulations. The fragility curve was prepared for the flow quantities such as flow rate through foundation soil, uplift force on the base of structure, and exit gradient in downstream to examine the reliability of the water retaining structure and the foundation soil. From the fragility curves, the effect of the location of cutoff wall on the reliability of water retaining structure and foundation soil according to the rise in water level was studied.

Calculation and field measurement of earth pressure in shield tunnels under the action of composite foundation

  • Chi Zhang;Shi-ju Ma;Yuan-cheng Guo;Ming-yu Li;Babak Safaei
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.17-27
    • /
    • 2023
  • Taking a subway shield tunnel in a certain section of Zhengzhou Metro Line 5 as an example, the field tests of shield cutting cement-soil monopile composite foundation were carried out. The load and internal force of the tunnel lining under the action of composite foundation were tested on-site and the distribution characteristics and variation laws of earth pressure around the tunnel under the load holding state of the composite foundation were analyzed. Five different load combinations (i.e., overburden load theory + q0, Terzaghi's theory + q0, Bierbaumer's theory + q0, Xie's theory + q0, and the proposed method (the combination of compound weight method and Terzaghi's theory) + q0) were used to calculate the internal force of the tunnel structure and the obtained results were compared with the measured internal force results. The action mode of earth pressure on the tunnel lining structure was evaluated. Research results show that the earth pressure obtained by the calculation method proposed in this paper was more consistent with the measured value and the deviation between the two was within 5%. The distribution of the calculated internal force of the tunnel structure was more in line with the distribution law of field test data and the deviation between the calculated and measured values was small. This effectively verified the rationality and applicability of the proposed calculation method. Research results provided references for the design and evaluation of shield tunnels under the action of composite foundations.

Dynamic Analysis and Optimal Design of Engine Mount Systems with Consideration of Foundation Flexibility

  • Lee, Sang-Beom;Yim, Hong-Jae;Lee, Jang-Moo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2E
    • /
    • pp.51-58
    • /
    • 2001
  • Equations of motion of an engine mount system including foundation flexibility are derived. Forced vibration analysis is carried out for the given engine mount system excited with the unbalanced force and moment. A new optimal design method for the engine mount system is proposed, in which vibration characteristics of the chassis frame structure are considered as design parameters.

  • PDF

Study on Seismic Response of Wall-Slab Apartment Building Sturucture Considering the Stiffnesses of a Foundation-Soil System (기초지반강성을 고려한 벽식구조 아파트의 지진응답에 관한 연구)

  • 김지원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.167-175
    • /
    • 2000
  • Seismic analyses of structures can`t be performed without considering the effect of soil-structure interaction and seismic responses of a structure taking into account the stiffnesses of a foundation-soil system show a significant difference from those with a rigid base. However, current seismic analyses of apartment building structures were carried out assuming a rigid base and ignoring the characteristics of a foundation and the properties of the underlying soil. In this study, seismic analyses of apartment buildings of a particular wall-slab structural type were carried out comparing seismic response spectra of a flexible base with those of a rigid base and UBC-97. Wall-slab type low-rise or mid-height apartment buildings built on the deep soil layer showed a rigid body motion with the reduced seismic responses due to the base isolation effect, indicating that it is too safe but uneconomical to utilize the design spectra of UBC-97 for the seismic analysis of a wall-slab type apartment buildings due to the too conservative design.

  • PDF

Shaking table test on soil-structure interaction system (1) : Superstructure with foundation on half-space soil (건물-지반 시스템에 관한 진동대실험 (1) : 반무한지반위의 구조물)

  • Lee Sung-Kyung;Masato Motosaka;Min Kyung-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.538-547
    • /
    • 2005
  • This paper presents the shaking table testing method, only using building specimen as an experimental part taking into account the dynamic soil-structure interaction based on the substructure method. The Parmelee's soil stiffness is used as an assumed soil model in here. The proposed methodologies are summarized as: (1) Acceleration feedback method is the one that the shaking table is driven by the motion, corresponding to the acceleration at foundation of the total SSI system. This is found by observing the fed-back accelerations of superstructure and using the interaction force based on the acceleration formulation. (2) Velocity feedback method is the one that the shaking table is driven by the motion, corresponding to the velocity at foundation of the total SSI system. This is found by observing the fed-back accelerations of superstructure and using the interaction force based on the velocity formulation. The applicability of the proposed methodologies to the shaking table test is investigated and experimentally verified in this paper.

  • PDF

Behavior of Electric Transmission Tower with Rock Anchor Foundation (암반 앵커기초로 시공된 송전철탑 구조물의 거동특성에 관한 연구)

  • Kim, Kyoung-Yul;Hong, Sung-Yun;Lee, Dae-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.605-614
    • /
    • 2010
  • In this paper, the initial behavior of transmission tower was analyzed. This tower was firstly constructed by rock anchor foundation in domestic 154 kV transmission line and wireless real-time monitoring system was installed to obtain the measured data for analysis of the structure behavior. For this purpose, 16 strain gauges was installed in anchors of foundation and strain gauges, clinometers, anemoscope and settlement sensors was installed at superstructure. As the results, the main factor which influence the behavior of superstructure is wind velocity, wind direction, rainfall and temperature change. Especially, the uplift load at stub of transmission structure revealed about 35.4 percentages of design load. Hereafter the long term stability will be analyzed.

  • PDF

A Study on the Suitability of Suction Caisson Foundation for the 5Mw Offshore Wind Turbine (5MW급 해상풍력발전시스템용 Suction Caisson 하부구조물 적합성 연구)

  • Kim, Yong-Chun;Chung, Chin-Wha;Park, Hyun-Chul;Lee, Seunug-Min;Kwon, Dae-Yong;Shi, Wei
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.47-54
    • /
    • 2010
  • Foundation plays an important role in the offshore wind turbine system. Different from conventional foundations, the suction caisson is proven to be economical and reliable. In this work, three-dimensional finite element method is used to check the suitability of suction caisson foundation. NREL 5MW wind turbine is chosen as a baseline model in our simulation. The maximum overturning moment and vertical load at the mudline are calculated using FAST and Bladed. Meanwhile the soil-structure interaction response from our simulation is also compared with the experiment data from Oxford university. The design parameter such as caisson length, diameter of skirt and spacing of multipod are investigated. Accordingly based on these parameters suggestions are given to use suction caisson foundations more efficiently.

Development of Seismic Stability Evaluation Technology for Rock Foundation of Nuclear Power Plant (원전 기초지반의 내진안정성 평가절차 개발)

  • Hwang, Seong-Chun;Jang, Jung-Bum;Lee, Dae-Su;Kim, Yun-Chil
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.74-81
    • /
    • 2005
  • The purpose of this study is to suggest a proper analysis model that can evaluate seismic stability for local rock foundation of nuclear power plant. Sliding Analysis, Pseudo-static Analysis and Danamic Analysis methods are used for analysing NPP rock foundation with the conditions like acting directions of input earthquake, boundary conditions, width and depth of analysing model, and modeling methods of weakness fault zones. As the results of study, Pseudo-static Analysis for lateral roller and dynamic analysis for transfer boundary condition showed good results, and analysing ranges of width and depth were 5 times of structure width and over 2 times of structure depth.

  • PDF

A Temperature Management of Mass Concrete for Crack Control in Machine Foundation (기계기초 매스콘크리트의 균열제어를 위한 온도관리)

  • 허택녕;이제방;손영현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.394-401
    • /
    • 1996
  • This paper persents the crack control of mass concrete in massive machine foundation. The dimension of the machine foundation is 52.6m$\times$14.4m$\times$8.5m. The one distinctive characteristic of mass concrete is thermal behavior. Since the cement-water reaction is exothermic by nature, the temperature rises inside the massive concrete structure. When the heat is not quickly dissipated, it can be quite high. Significant tensile stresses may develop from the volume change associated with the increase of decrease of temperature within the mass concrete structure. To avoid occurrence of harmful cracks due to hydration heat, special attention shall be given to the construction of mass cnocrete structures. The temperature control system of mass concrete is proposed in this paper. This system contains a discussion of materials and concrete mix proportioning, thermal analysis, curing method, temperature control, and measurement of hydration heat. As will be seen throughout the paper, the proposed temperature control system have a great effect on the temperature-related cracks on mass concrete structures.

  • PDF