• 제목/요약/키워드: Foundation structure

검색결과 1,429건 처리시간 0.026초

Seismic response of a rigid foundation embedded in a viscoelastic soil by taking into account the soil-foundation interaction

  • Messioud, Salah;Sbartai, Badreddine;Dias, Daniel
    • Structural Engineering and Mechanics
    • /
    • 제58권5호
    • /
    • pp.887-903
    • /
    • 2016
  • This study analyses the seismic response of a three-dimensional (3-D) rigid massless square foundation resting or embedded in a viscoelastic soil limited by rigid bedrock. The foundation is subjected to harmonic oblique seismic waves P, SV, SH and R. The key step is the characterization of the soil-foundation interaction by computing the impedance matrix and the input motion matrix. A 3-D frequency boundary element method (BEM) in conjunction with the thin layer method (TLM) is adapted for the seismic analysis of the foundation. The dynamic response of the rigid foundation is solved from the wave equations by taking into account the soil-foundation interaction. The solution is formulated using the frequency BEM with the Green's function obtained from the TLM. This approach has been applied to analyze the effect of soilstructure interaction on the seismic response of the foundation as a function of the kind of incident waves, the angles of incident waves, the wave's frequencies and the embedding of foundation. The parametric results show that the non-vertical incident waves, the embedment of foundation, and the wave's frequencies have important impact on the dynamic response of rigid foundations.

Nonlinear flexibility-based beam element on Winkler-Pasternak foundation

  • Sae-Long, Worathep;Limkatanyu, Suchart;Hansapinyo, Chayanon;Prachasaree, Woraphot;Rungamornrat, Jaroon;Kwon, Minho
    • Geomechanics and Engineering
    • /
    • 제24권4호
    • /
    • pp.371-388
    • /
    • 2021
  • A novel flexibility-based beam-foundation model for inelastic analyses of beams resting on foundation is presented in this paper. To model the deformability of supporting foundation media, the Winkler-Pasternak foundation model is adopted. Following the derivation of basic equations of the problem (strong form), the flexibility-based finite beam-foundation element (weak form) is formulated within the framework of the matrix virtual force principle. Through equilibrated force shape functions, the internal force fields are related to the element force degrees of freedom. Tonti's diagrams are adopted to present both strong and weak forms of the problem. Three numerical simulations are employed to assess validity and to show effectiveness of the proposed flexibility-based beam-foundation model. The first two simulations focus on elastic beam-foundation systems while the last simulation emphasizes on an inelastic beam-foundation system. The influences of the adopted foundation model to represent the underlying foundation medium are also discussed.

지반-구조물 상호작용을 고려한 기초모델링 (Foundation Modeling Considering the Soil-Structure Interaction)

  • 이용제;김태진;마리아 펭
    • 한국지진공학회논문집
    • /
    • 제16권3호
    • /
    • pp.13-22
    • /
    • 2012
  • 지반-구조물의 상호작용은 구조물의 동적 해석 및 기초 설계에 있어 지대한 영향을 미침에도 불구하고 그 중요성이 간과되어 왔다. 이는 모델링 과정의 복잡성으로 인해 실무자를 위한 적절한 절차가 미비 하다는 점에서 상당부분 그 이유를 찾을 수 있을 것이다. 본 연구에서는 먼저 구조물의 동적 해석이 필수적으로 요구되는 강진지역인 미국 캘리포니아에 위치한 Cal(IT)2 건물을 대상으로 지반 경계조건을 달리했을 시 해석상의 차이가 어느 정도 나는지를 검토해 보았다. 기초 모델링 기법의 하나인 Beam on Nonlinear Winkler Foundation Model을 Linear Matrix Inequalities Model Reduction 기법을 활용하여 보다 간략하게 사용할 수 있도록 하였다. 이렇게 하여 만들어진 대상 건물의 유한요소 모델과 실재 얻어진 가속도 데이터를 비교하여 제시된 방식을 통해 매우 우수한 해석 결과를 얻을 수 있음을 보였다.

석탑 탑구(塔區)의 역할 및 변천에 관한 연구 (A Study on the Role and Transition of the Tapgu in Stone Pagoda)

  • 정해두;장석하
    • 건축역사연구
    • /
    • 제19권1호
    • /
    • pp.91-104
    • /
    • 2010
  • Korea's stone buildings are varied in their types such as stone pagodas, stone lanterns, stone bridges, stoneworks, etc. These account for more than 30% over the entire cultural properties, but research achievements are lacking compared to wooden buildings. Accordingly, this study aims to identify the shape, role and transition of Tapgu, which had been used to set up boundary at a stone pagoda, one of the stone buildings. The 20th stone pagodas, which have relative accuracy in its forming year, have been studied around national treasure or treasure between 7th century and 9th century. There are a lot of different opinions about the role and meaning of Tapgu, and at this writer's option, Tapgu is defined as follows: First, each structure plays a different role. A structure to pass the load in the upper part to the ground can be seen as a stair or a pedestal, but a structure to form double foundations can be considered as Tapgu. Second, Tapgu can be used to divide areas with stones or stepping stones. As a result, the shape, role and transition of Tapgu is as follows: Firstly, when it comes to its shape, Tapgu includes flagstone type, belt type, double foundation type, compound type. Flagstone type had been used to set up boundary at stone pagodas by using foundation stone, belt type by keeping apart from stone pagodas, and double foundation stone by installing dual foundation stones. Secondly, Tapgu is considered to set up boundary in the case of flagstone and plate stone, and acts like a structure which can prevent surrounding area of stone pagoda from coming up while being stuck around stone pagodas. Belt type was installed only for the purpose of forming boundary. At the bottom, double foundation stone had been used to pass the load in the upper part to the ground in the same way as the foundation stone in the upper part, and the boundaries were set varying the size. Thirdly, when it comes to the transition of Tapgu, flagstone type of boundary stone had been installed in the 7th century, and belt type of boundary stone had been mainly installed in the 8th century. And double foundation stone had been installed in the 9th century. Comprehensively, flagstone type and belt type had been made around the 7th and 8th century when Tapgu was regarded important and stone pagoda started to be built. At the turn to the 9th century, the role of Tapgu had been increasingly losing in the construction of stone pagoda, and foundation stone started to appear.

Soil-structure interaction effects on the seismic response of multistory frame structure

  • Botic, Amina;Hadzalic, Emina;Balic, Anis
    • Coupled systems mechanics
    • /
    • 제11권5호
    • /
    • pp.373-387
    • /
    • 2022
  • In this paper,soil-structure interaction effects on the seismic response of multistory frame structure on raft foundation are numerically analyzed. The foundation soil profile is assumed to consists of a clay layer of variable thicknessresting on bedrock. Amodified plane-strain numerical model isformed in the software Plaxis, and both free vibration analysis, and earthquake analysis for a selected ground motion accelerogram are performed. The behavior of the structure is assumed to be linear elastic with Rayleigh viscous damping included. The behavior of the clay layer is modeled with a Hardening soil model with small strain stiffness. The computed results in terms of fundamental period and structural horizontal displacementsfor the case of fixed base and for different thicknesses of clay layer are presented, compared, and discussed.

동적 원심모형시험을 통한 지반 및 상부 구조물의 지진 하중 특성 (Dynamic Centrifuge Modeling for Evaluating Seismic Loads of Soil-Foundation-Structures)

  • 이세현;김동수;추연욱;박홍근;김동관
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.192-200
    • /
    • 2010
  • Korea is part of a region of low or moderate seismic zone in which few earthquakes have been monitored, so it is difficult to approve design ground motions and seismic responses on structures from response spectrum. In this study, a series of dynamic centrifuge model tests for demonstrating seismic amplification characteristics in soil-foundation-structure system were performed using electro-hydraulic shaking table mounted on the KOCED 5.0 m radius beam centrifuge at KAIST in Korea. The soil model were prepared by raining dry sand and $V_S$ profiles were determined by performing bender element tests before shaking. The foundation types used in this study are shallow embedded foundation and deep basement fixed on the bottom. Total 7 building structures were used and the response of building structures were compared with response spectrum from the acceleration records on surface.

  • PDF

유체-구조물-지반 상호작용을 고려한 비결합 말뚝기초에 지지된 LNG 저장탱크의 수평지진입력에 대한 지진응답 매개변수해석 (A Parametric Study on the Seismic Response Analysis of LNG Storage Tank with Disconnected Pile Foundation Subjected to Horizontal Seismic Input Considering Fluid-Structure-Soil Interaction)

  • 손일민;김재민
    • 한국지진공학회논문집
    • /
    • 제28권1호
    • /
    • pp.21-32
    • /
    • 2024
  • This study performed the seismic response analysis of an LNG storage tank supported by a disconnected piled raft foundation (DPRF) with a load transfer platform (LTP). For this purpose, a precise analytical model with simultaneous consideration of Fluid-Structure Interaction (FSI) and Soil-Structure Interaction (SSI) was used. The effect of the LTP characteristics (thickness, stiffness) of the DPRF system on the seismic response of the superstructure (inner and outer tanks) and piles was analyzed. The analytical results were compared with the response of the piled raft foundation (PRF) system. The following conclusions can be drawn from the numerical results: (1) The DPRF system has a smaller bending moment and axial force at the head of the pile than the PRF system, even if the thickness and stiffness of the LTP change; (2) The DPRF system has a slight stiffness of the LTP and the superstructure member force can increase with increasing thickness. This is because as the stiffness of the LTP decreases and the thickness increases, the natural frequency of the LTP becomes closer to the natural frequency of the superstructure, which may affect the response of the superstructure. Therefore, when applying the DPRF system, it is recommended that the sensitivity analysis of the seismic response to the thickness and stiffness of the LTP must be performed.

건물의 기초 형식 선정을 위한 규칙 기반 시스템 (Rule Based System for Selection of Foundation Types of Building Structures)

  • 김한수;최창근
    • 전산구조공학
    • /
    • 제9권1호
    • /
    • pp.23-32
    • /
    • 1996
  • 본 논문에서는 건물 기초 설계의 자동화를 위한 규칙 기반 시스템을 개발하였다. 상부구조의 설계 결과와 지반 조사 보고서로부터의 지반에 관한 자료를 읽어 들여 허용지내력을 추정하고 주어진 상황에 적절한 기초형식을 추론하는 방법을 제안하였다. 허용지내력은 표준관입시험치로부터 추정하였고, 이를 바탕으로 각 기중과 벽체의 기초형식은 우선 독립기초와 벽체기초라고 가정하여 그 크기를 계산하고 각 기초의 중첩여부를 조사하여 중첩되는 기초들은 본 논문에서 개발한 기초 합병의 방법을 이용하여 새로운 기초형식으로 변경되도록 하였다. 개발된 시스템은 주어진 상부구조 설계결과와 지반조건에 대하여 적절한 기초형식을 선정하여 그에 따른 배근 설계를 쉽게 할 수 있도록 해준다.

  • PDF

Experimental investigation on the effectiveness of under-foundation isolator against train-induced vibrations considering foundation type

  • Ehsan Haghighi;Javad Sadeghi;Morteza Esmaeili
    • Structural Engineering and Mechanics
    • /
    • 제89권2호
    • /
    • pp.121-133
    • /
    • 2024
  • In this paper, the performance of under-foundation isolators against generally annoying train-induced vibrations was examined experimentally. The effect of foundation type on the efficacy of such isolators was investigated for the first time. To this end, laboratory models including a soil container, soil, building with three types of foundation (i.e., single, strip, and mat), and isolator layer were employed. Through various dynamic tests, the effects of foundation type, isolation frequency, and the dominant frequency of train load on the isolator's performance were studied. The results demonstrated that the vibration level in the unisolated building with the strip and mat foundation was, respectively, 29 and 38% lower than in the building with the single foundation. However, the efficacy of the isolator in the building with the single foundation was, respectively, 21 and 40% higher than in the building with the strip and mat foundation. Furthermore, a lower isolation frequency and a higher excitation frequency resulted in greater isolator efficacy. The best vibration suppression occurred when the excitation frequency was close to the floor's natural frequency.

Main Engine의 Heavy Spare Parts가 설치된 Engine Room Opening Deck의 방진 설계 사례 (A Vibration Isolation Design for Engine Room Opening Deck around Heavy Spare Parts of the Main Engine)

  • 전용훈;임구섭;정태석
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2009년도 특별논문집
    • /
    • pp.93-96
    • /
    • 2009
  • Foundation structure for the main engine heavy spare parts in the engine room is susceptible to resonance problem due to outfitting weight. In addition the deck floor has a large opening for the main engine installation and maintenance, which further weakens the foundation structure. To reinforce the weak structure, two types of approaches have been used; 1) insert an H-pillar below or above the floor and 2) increase the stiffener size. In this paper, the H-pillar approach is used to solve the vibration problem of the foundation structure in the engine room opening area. A commercial program is used to analyze the vibration problem ad to find the location and the size of the H-pillar. Modal test at the quay and on-board vibration measurement during the sea trial have confirmed the validity of inserting an H-pillar below the floor.

  • PDF