• Title/Summary/Keyword: Foundation conditions

검색결과 1,089건 처리시간 0.026초

A polynomial mathematical tool for foundation-soil-foundation interaction

  • Sbartai, Badreddine
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.547-560
    • /
    • 2020
  • This paper studies the dynamic foundation-soil-foundation interaction for two square rigid foundations embedded in a viscoelastic soil layer. The vibrations come from only one rigid foundation placed in the soil layer and subjected to harmonic loads of translation, rocking, and torsion. The required dynamic response of rigid surface foundations constitutes the solution of the wave equations obtained by taking account of the conditions of interaction. The solution is formulated using the frequency domain Boundary Element Method (BEM) in conjunction with the Kausel-Peek Green's function for a layered stratum, with the aid of the Thin Layer Method (TLM), to study the dynamic interaction between adjacent foundations. This approach allows the establishment of a mathematical model that enables us to determine the dynamic displacements amplitude of adjacent foundations according to their different separations, the depth of the substratum, foundations masss, foundations embedded, and the frequencies of excitation. This paper attempts to introduce an approach based on a polynomial mathematical tool conducted from several results of numerical methods (BEM-TLM) so that practicing civil engineers can evaluation the dynamic foundations displacements more easy.

Contact buckling behaviour of corrugated plates subjected to linearly varying in-plane loads

  • Dong, Jianghui;Ma, Xing;Zhuge, Yan;Mills, Julie E.
    • Steel and Composite Structures
    • /
    • 제29권3호
    • /
    • pp.333-348
    • /
    • 2018
  • An analytical method is developed for analysing the contact buckling response of infinitely long, thin corrugated plates and flat plates restrained by a Winkler tensionless foundation and subjected to linearly varying in-plane loadings, where the corrugated plates are modelled as orthotropic plates and the flat plates are modelled as isotropic plates. The critical step in the presented method is the explicit expression for the lateral buckling mode function, which is derived through using the energy method. Simply supported and clamped edges conditions on the unloaded edges are considered in this study. The acquired lateral deflection function is applied to the governing buckling equations to eliminate the lateral variable. Considering the boundary conditions and continuity conditions at the border line between the contact and non-contact zones, the buckling coefficients and the corresponding buckling modes are found. The analytical solution to the buckling coefficients is also expressed through a fitted approximate formula in terms of foundation stiffness, which is verified through previous studies and finite element (FE) method.

연동비닐하우스 기초의 회전저항성능 평가에 관한 실험적 연구 (Experimental Study on Evaluation of Rotational Resistance of Multi-Span Greenhouse Foundations)

  • 이현지;신지욱;김민선;최기선
    • 한국지반환경공학회 논문집
    • /
    • 제19권9호
    • /
    • pp.5-12
    • /
    • 2018
  • 연동비닐하우스의 기초는 주로 수직하중을 고려하여 소형의 얕은 콘크리트 기초로 설계 시공된다. 그러나 최근 강풍과 같은 이상기후로 인하여 기초에 설계 강도 이상의 수평하중 및 인발하중이 작용하여 온실기초의 안전성 문제를 야기하고 있다. 비닐하우스 기초의 안전성을 합리적으로 평가하기 위해 지반-기초의 상호작용에 의해 발현되는 회전 및 인발강성을 평가하여야 하며 이는 상부 구조재의 안전성에도 영향을 미치는 요소가 된다. 본 연구에서는 내재해형 연동비닐하우스 규격 기초를 형상에 따라 분류하여 3개의 대표 기초 유형을 선정하고, 기초 유형별 수평하중 가력실험 및 이론 해석을 수행하였다. 실험 및 해석의 비교 분석 결과, 기초-지반 접촉면의 성질과 지반의 역학적 성질이 동일할 경우 기초는 지반과의 접촉면적비에 따라 회전저항성능에 차이를 보이는 것으로 나타났다.

파이프 골조온실의 원주형 콘크리트 기초의 인발저항력에 관한 연구 (A Study on the Uplift Capacity of Cylindrical Concrete Foundations for Pipe-Framed Greenhouse)

  • 윤용철;윤충섭;서원명;강만호
    • 한국농공학회지
    • /
    • 제40권4호
    • /
    • pp.109-119
    • /
    • 1998
  • Recently pipe-framed greenhouses are widely constructed on domestic farm area. These greenhouses are extremely light-weighted structures and so are easily damaged under strong wind due to the lack of uplift resistance of foundation piles. This experiment was carried out by laboratory soil tank to investigate the displacement be haviors of cylindrical pile foundations according to the uplift loads. Tested soils were sampled from two different greenhouse areas. The treatment for each soil type are consisted of 3 different soil moisture conditions, 2 different soil depths, and 3 different soil compaction ratios. Each test was designed to be repeated 2 times and additional tests were carried out when needed. The results are summarized as follows : 1. When the soil moisture content are low and/or pile foundations are buried relatively shallow, ultimate uplift capacity of foundation soil was generated just after begining of uplift displacement. But under the high moisture conditions and/or deeply buried depth, ultimate up-lift capacity of foundation soil was generated before the begining of uplift displacement. 2. For the case of soil S$_1$, the ultimate uplift capacity of piles depending on moisture contents was found to be highest in optimum moisture condition and in the order of air dryed and saturated moisture contents. But for the case of soil S$_2$, the ultimate uplift capacity was found to be highest in optimum moisture condition and in the order of saturated and air dryed moisture contents. 3. Ultimate uplift capacities are varied depending on the pile foundation soil moisture conditions. Under the conditions of optimum soil moisture contents with 60cm soil depth, the ultimate uplift capacity of pile foundation in compaction ratio of 80%, 85%, and 90% for soil 51 are 76kg, 115kg, and 155kg, respectively, and for soil S$_2$are 36kg, 60kg, and 92kg, respectively. But considering that typical greenhouse uplift failure be occurred under saturnted soil moisture content which prevails during high wind storm accompanying heavy rain, pile foundation is required to be designed under the soil condition of saturated moisture content. 4. Approximated safe wind velosities estimated for soil sample S$_1$and S$_2$are 32.92m/s and 26.58m/s respectively under the optimum soil condition of 90% compaction ratio and optimum moisture content. But considering the uplift failure pattern under saturated moisture contents which are typical situations of high wind accompanying heavy rain, the safe wind velosities for soil sample S$_1$and S$_2$are not any higher than 20.33m/s and 22.69m/s respectively.

  • PDF

Three-dimensional numerical parametric study of deformation mechanisms of grouped piled raft foundation due to horizontal loading

  • Bo Wang;Houkun Cui;Yan Li;Ya Dai;Nan Zhang
    • Geomechanics and Engineering
    • /
    • 제35권6호
    • /
    • pp.617-626
    • /
    • 2023
  • In this study, three-dimensional numerical parametric study was conducted to explore deformation mechanisms of grouped piled-raft-foundation due to lateral load in clays. Effects of load intensity, loading angle, soil stiffness, pile diameter, pile spacing and pile length on foundation deformations were explored. It is found that the smallest and largest movements of pile foundation are induced when the loading angles are 0° and 30°~60°, respectively. By increasing loading angle from 0° to 30°~60°, the resultant horizontal movements and settlements increase by up to 20.0% and 57.1%, respectively. Since connection beams can substantially increase integrity of four piled raft foundation, resultant horizontal movements, settlements and bending moments induced in the piled raft foundation decrease by up to 54.0%, 8.8% and 46.3%, respectively. By increasing soil stiffness five times, resultant horizontal movements and settlements of pile foundation decrease by up to 61.7% and 13.0%, respectively. It is indicated that effects of connection beam and soil stiffness on settlements of pile foundation are relatively small. When pile diameter is less than 1.4 m, deformations of piled raft foundation decrease substantially as a reduction in the pile diameter. Two dimensional groups are proposed to develop calculation charts of horizontal movements and settlements of pile foundation. The proposed calculation charts can directly estimate movements of piled raft foundation under arbitrary loading, ground and pile conditions.

Effect of Pasternak foundation: Structural modal identification for vibration of FG shell

  • Hussain, Muzamal;Selmi, Abdellatif
    • Advances in concrete construction
    • /
    • 제9권6호
    • /
    • pp.569-576
    • /
    • 2020
  • Employment of the wave propagation approach with the combination of Pasternak foundation equation gives birth to the shell frequency equation. Mathematically, the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. A cylindrical shell is placed on the elastic foundation of Pasternak. For isotropic materials, the physical properties are same everywhere, whereas the laminated and functionally graded materials, they vary from point to point. Here the shell material has been taken as functionally graded material. The influence of the elastic foundation, wave number, length and height-to-radius ratios is investigated with different boundary conditions. The frequencies of length-to-radius and height-to-radius ratio are counter part of each other. The frequency first increases and gain maximum value in the midway of the shell length and then lowers down for the variations of wave number. It is found that due to inducting the elastic foundation of Pasternak, the frequencies increases. It is also exhibited that the effect of frequencies is investigated by varying the surfaces with stainless steel and nickel as a constituent material. MATLAB software is utilized for the vibration of functionally graded cylindrical shell with elastic foundation of Pasternak and the results are verified with the open literature.

불리한 조건에서의 콘크리트 표면차수벽형 석괴댐 설계 및 시공 (Study on Design and Construction of CFRD under Unfavorable Conditions)

  • 박동순;김형수
    • 지질공학
    • /
    • 제16권1호
    • /
    • pp.97-107
    • /
    • 2006
  • 콘크리트 표면차수벽형 석괴댐(CFRD; Concrete Faced Rockfill Dam)는 기존의 중심코어 형 락필댐(ECRD; Earth Cored Rockfill Dam)과 대별되는 우수한 구조적, 재료적 특성으로 현재 가장 널리 활용되는 댐 형식이다. 본 고에서는 불리한 조건에서의 CFRD의 설계와 시공에 있어 최근에 부각된 최신 기술들을 정리하여 향후 활용에 도움을 줄 수 있도록 하였다. 예를 들어, 연약한 암을 이용한 댐체 축조, sand-gravel fill, 연결 슬래브 공법, 충적층 기초의 처리 공법등에 대한 간략한 기술적 동향을 고찰하여 관련 기술자들의 이해를 돕고자 하였다.

Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection

  • Xu, Jia-Qin;She, Gui-Lin
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.329-337
    • /
    • 2022
  • In this paper, the thermal post-buckling characteristics of functionally graded (FG) pipes with initial geometric imperfection are studied. Considering the influence of initial geometric defects, temperature and geometric nonlinearity, Euler-Lagrange principle is used to derive the nonlinear governing equations of the FG pipes. Considering three different boundary conditions, the two-step perturbation method is used to solve the nonlinear governing equations, and the expressions of thermal post-buckling responses are also obtained. Finally, the correctness of this paper is verified by numerical analyses, and the effects of initial geometric defects, functional graded index, elastic foundation, porosity, thickness of pipe and boundary conditions on thermal post-buckling response are analyzed. It is found that, bifurcation buckling exists for the pipes without initial geometric imperfection. In contrast, there is no bifurcation buckling phenomenon for the pipes with initial geometric imperfection. Meanwhile, the elastic stiffness can significantly improve thermal post-buckling load and thermal post-buckling strength. The larger the porosity, the greater the thermal buckling load and the thermal buckling strength.

모형실험을 통한 복합기초의 현장 적용성 평가 (Field Applicability Evaluation of Foundation Combine with Footing and Pile by Model Test)

  • 김학문;장경준
    • 한국산학기술학회논문지
    • /
    • 제12권8호
    • /
    • pp.3729-3744
    • /
    • 2011
  • 토목구조물이 대형화되고 규모가 커짐에 따라 하부 기초 지반 조건도 위치마다 상이하게 나타나게 되어 일부구간에서 기초지반의 불균일성으로 인해 국부적으로 지내력이 부족한 경우가 빈번하게 발생되고 있다. 일반적으로 상부 구조물의 안정성 확보 차원에서 기초지반이 균질하지 않은 경우에는 가능한 보수적인 기초공법을 적용함으로써 안정성 확보를 그 주안점으로 두고 있다. 직접기초와 파일기초가 혼용되는 복합기초의 경우에 대한 연구가 미비하여 그 적용성과 안정성이 검증되지 못하고 개략검토를 통한 복합기초의 시공이 적용되고 있는 점이 원인으로 사료된다. 본 연구에서는 직접기초와 파일기초가 혼용되는 복합기초에 대한 적용가능성을 평가하고, 석고와 주문진 표준사, 쇄석 등을 이용하여 다양한 지반을 조성한 실내 모형실험을 수행하여 동일기초와 복합기초의 거동을 비교, 분석하였다. 이와 같은 모형실험을 통한 연구결과를 근거로 복합기초(직접기초+말뚝기초)와 보수적인 말뚝기초 및 전면기초의 거동을 확인하고 지내력이 급격히 변화하는 지반의 경우 기존의 기초보다 효율적이고 경제적인 복합기초의 안정성 및 적용성을 평가하였다. 그 결과, 복합기초의 적용시 보수적인 말뚝기초보다 전체적인 침하량이 증가하였으나 그 차이가 미비하였고, 구조물의 부등침하에 대한 안정성평가 결과, 적용 가능한 것으로 확인되었다.

Numerical Analysis for High-rise Building Foundation and Further Investigations on Piled Raft Design

  • Won, Jinoh;Lee, Jin Hyung;Cho, Chunwhan
    • 국제초고층학회논문집
    • /
    • 제4권4호
    • /
    • pp.271-281
    • /
    • 2015
  • This paper introduces detailed three-dimensional numerical analyses on a bored pile foundation for a high-rise building. A static load test was performed on a test pile and a numerical model of a single pile, which was calibrated by comparing it with the test result. The detailed numerical analysis was then conducted on the entire high-rise building foundation. Further study focused on soil pressures under the base slab of a piled raft foundation. Total seven cases with different pile numbers and raft-soil contact conditions were investigated. The design criteria of a foundation, especially settlement requirement were satisfied even for the cases with fewer piles under considerable soil pressure beneath the base slab. The bending moment for the structural design of the base slab was reduced by incorporating soil pressures beneath the base slab along with bored piles. Through the comparative studies, it was found that a more efficient design can be achieved by considering the soil pressure beneath the slab.