• 제목/요약/키워드: Fouling surface

검색결과 280건 처리시간 0.021초

Surface hydrophilicity modification of PVDF membranes with an external electric field in the phase inversion process

  • Shi, Bao-Li;Su, Xing;He, Jing;Wang, Li-Li
    • Membrane and Water Treatment
    • /
    • 제6권5호
    • /
    • pp.351-363
    • /
    • 2015
  • To increase the surface hydrophilicity of PVDF membranes, in this paper, an electric enhancing method was adopted to treat PVDF nascent membranes during the phase inversion process. It was found that when PEG 600 was taken as the additive, the surface water contact angle of the PVDF membrane treated under 2 kV electric field was decreased from $84.0^{\circ}$ to $65.7^{\circ}$. The reason for the surface elements change of the PVDF membranes prepared under the electric field was analyzed in detail with the dielectric parameters of the polymer dope solutions. Results from BSA adsorption experiment showed that the antifouling ability of the external electric field-treated membranes was distinctly enhanced when compared with that of the untreated membranes. The amount of BSA adsorbed by the treated membranes was lower by 38-43%. Compared with the common chemical reaction methods to synthesize hydrophilic additives or membrane materials, the electric field-assisted processing method did not involve any additional chemical synthesis process and it was capable of realizing better hydrophilicity.

A novel approach to bind graphene oxide to polyamide for making high performance Reverse Osmosis membrane

  • Raval, Hiren D.;Das, Ravi Kiran
    • Membrane and Water Treatment
    • /
    • 제8권6호
    • /
    • pp.613-623
    • /
    • 2017
  • We report the novel thin film composite RO membrane modified by graphene oxide. The thin film composite RO membrane was exposed to 2000 mg/l sodium hypochloride; thereafter it was subjected to different graphene oxide concentration ranging from 50 mg/l to 1000 mg/l in water. The resultant membrane was crosslinked with 5000 mg/l N-hydroxysuccinimide. The performance of different membranes were analysed by solute rejection and water-flux measurement. It was found that 100 mg/l graphene oxide exposure followed by 5000 mg/l N-hydroxysuccinimide treatment resulted in the membrane with the highest solute rejection of 97.78% and water-flux of 4.64 Liter per sqm per hour per bar g. The membranes were characterized by contact angle for hydrophilicity, scanning electron micrographs for surface morphology, energy dispersive X-Ray for chemical composition of the surface, Atomic force microscope for surface roughness, ATR-FTIR for chemical structure identification. It was found that the graphene oxide modified membrane increases the salt rejection performance after exposure to high-fouling water containing albumin. Highly hydrophilic, antifouling surface formation with the nanomaterial led to the improved membrane performance. Moreover, the protocol of incorporating nanomaterial by this post-treatment is simple and can be applied to any RO membrane after it is manufactured.

Preparation and Characterization of PP-g-Poloxamer Membranes by UV Irradiation Methods and their Solutes Permeation Behaviors

  • Lee, S. H.;Shim, J. K.;Lee, Y. M.;Ahn, S. H.;Yoo, I. K.;Baek, K. H.
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 춘계 총회 및 학술발표회
    • /
    • pp.97-98
    • /
    • 1998
  • 1. Introduction : Polypropylene(PP) membrane is widely used in the field of microfiltration and ultrafiltration. However, the hydrophobicity of PP causes the adsorption of hydrophobic and amphoteric solutes in the feed. Surface modification techniques of membrane through the treatment of hydrophilizing agents, coating of hydrophilic compounds, UV, plasma and high energy irradiation, etc. can have a great effect on propensities to prevent the protein from staining membranes. Among them, the modification to hydophilize membrane surface using UV is very simple and effective. Recently many studies for more effective surface modification have been conducted. Iwata et al. prepared membranes by grafting polyethylene glycol diacrylate macromer(PEGDA) onto polysulfone with plasma using a glow discharge reactor which prevent the oil from staining the membrane. The primary mechanism contributing to the membranes is preventing the oil from directly contacting the surface of the membrane as the PEGDA chains dissolved into emulsion. To evaluate their feasibility for use as a anti-fouling separation membrane, we prepared hydrophilic membranes by UV irradiation method and investigated their characteristics.

  • PDF

원관 주위 유하 액막에 의한 관 외벽에서의 입자 부착에 대한 실험 (An experiment of the particle deposition on a circular cylinder in a laminar flow)

  • 정종수;이윤표;정기만;박찬우
    • 설비공학논문집
    • /
    • 제12권2호
    • /
    • pp.113-119
    • /
    • 2000
  • An experimental study has been carried out in order to investigate on a particle deposition on a circular cylinder surface. The present study is focused on the particulate fouling occurring in a heat exchanger for a seawater desalinization, in a laminar flow over circular cylindrical tubes. The objective is to investigate how NaCl concentration influences the $SiO2$ particle deposition on the surface of a glass circular cylinder. The NaCl concentration was changed from 0 g/L to 40 g/L. As the experimental results of $SiO2$ particle which is deposited on the glass circular cylinder surface showed, particle deposition rate per unit time increases rapidly with the increase of NaCl concentration between 0 g/L and 15 g/L. After the maximum of particle deposition rate was found at the NaCl concentration of 15 g/L, particle deposition rate remains unchanged or decreases gradually with the NaCl concentration from 15 g/L to 40 g/L. Also the $SiO2$ deposition rate of particles does not have serious variations with the position at present glass surface.

  • PDF

Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membrane-bioreactor: Ar plasma treatment

  • Zhou, Jin;Li, Wei;Gu, Jia-Shan;Yu, Hai-Yin
    • Membrane and Water Treatment
    • /
    • 제1권1호
    • /
    • pp.83-92
    • /
    • 2010
  • To improve the antifouling characteristics of polypropylene hollow fiber microporous membranes in a submerged membrane-bioreactor for wastewater treatment, the surface-modification was conducted by Ar plasma treatment. Surface hydrophilicity was assessed by water contact angle measurements. The advancing and receding water contact angles reduced after the surface modification, and hysteresis between the advancing and receding water contact angles was enlarged after Ar plasma treatment due to the increased surface roughness after surface plasma treatment. After continuous operation in a submerged membrane-bioreactor for about 55 h, the flux recovery after water cleaning and the flux ratio after fouling were improved by 20.0 and 143.0%, while the reduction of flux was reduced by 28.6% for the surface modified membrane after 1 min Ar plasma treatment, compared to those of the unmodified membrane. Morphological observations showed that the mean membrane pore size after Ar plasma treatment reduced as a result of the deposition of the etched species; after it was used in the submerged membrane-bioreactor, the further decline of the mean membrane pore size was caused by the deposition of foulants. X-ray photoelectron spectroscopy and infrared spectroscopy confirmed that proteins and polysaccharide-like substances were the main foulants in the precipitate.

기능성 카본막의 제조 Mechanism에 관한 연구 (Study on manufacturing mechanism of functional carbon membrane)

  • 배상대
    • 문화기술의 융합
    • /
    • 제4권2호
    • /
    • pp.211-216
    • /
    • 2018
  • 흡착과 막을 융합시킨 분리기술은 수처리와 같은 환경 분야에서 많은 응용이 기대된다. 이 융합기술에 막분리 공정에서 문제가 되는 막 fouling을 억제시키기 위해 막표면에 카본휘스커를 성장시킨 기능성 카본막을 개발하였다. 본 연구에서는 기능성 카본막의 제조 Mechanism을 밝히기 위해, 각각의 혼합비율인 폴리머라텍스로 전처리를 하고 CVD(Chemical Vapor Deposing)법에 따라 막을 제조하였다. 이 막을 주사전자현미경(Scanning Electron Microscope(SEM)), CHN분석기(Elemental Analyzer), X-선회절법(X-Ray Diffraction(XRD))으로 분석하였다. 그 결과 3번막(PVdC(PolyVinyl di-Chloride):PVC(Polyvinly Chloride)=4.5:55)의 경우가 카본휘스커의 직경과 밀도가 높았다. 이것은 폴리머라텍스의 수소함유량에 따라 카본휘스커의 직경과 밀도를 조절하는 것이 가능할 것으로 보인다.

복류수를 이용한 한외여과공정의 장기운전 평가 (Long Term Evaluation of UF Membrane process using River-bed Water)

  • 김충환;임재림;강석형;김수한
    • 상하수도학회지
    • /
    • 제22권4호
    • /
    • pp.429-436
    • /
    • 2008
  • Membrane system has been increasingly considered as a safe and cost-effective water treatment process especially in case of small scale water works. This research is a basis of membrane application in water works through a long period test with obtaining operation skills and evaluation of water quality and cost competitiveness. For the research, the UF membrane system was installed in small water treatment plant that uses river-bed water as raw water. The system was consisted of 2 stage membrane and operated in constant flow mode (Flux: 1.5, 1.0, 0.9, 0.6). In each different flux condition, TMP trends were showed better results at lower flux condition. And through the high flux condition test, it is certified that membrane system could deal with breakdown of one stage. Water quality of permeate was satisfied the water quality standards especially turbidity. To know what mainly causes fouling on membrane, the test by membrane with several cleaning agents and EDX analysis have done in lab. Through the tests, ferrous concentration in raw water, backwashing water and membrane surface etc. was high and it causes fouling inside and outside of membrane. So acid cleaning using organic acid such as oxalic acid is necessary in Chemical in Place (CIP). At the economical aspect the electrical cost of membrane system is higher than that of slow sand filtration but labor cost can be reduced by automation. However, the use of labor should be determined considering effectiveness and stability of operation. Because during the operation, there are several breakdown such as electrical shock by lightning, water drop in summer, etc.

응집 및 정밀여과공정의 강화역세정시 NaOCl에 따른 PTFE막 투과능 회복과 막오염층 변화 (Permeability recovery and changes in fouling layer characteristics of PTFE membrane by enhanced backwash cleaning using NaOCl during coagulation and microfiltration)

  • 강선구;박근영;곽동근;김윤중;권지향
    • 상하수도학회지
    • /
    • 제29권2호
    • /
    • pp.233-241
    • /
    • 2015
  • Polytetrafluoroethylene (PTFE) membrane has high resistance to chlorine, which is a great advantages in chemical cleaning to recover water flux during membrane processes in drinking water systems. A humic kaolin water with approximately 4 mg/L of DOC and 10 NTU of turbidity was prepared as a feed water. Coagulation pretreatment with or without settling was applied. The coagulation with settling showed the greatest water production. The reduced flux was effectively recovered by NaOCl cleaning, i.e., 21% recovery by 50 mg/L of NaOCl cleaning and 49% recovery by 500 mg/L NaOCl cleaning. The images of SEM and AFM analyses were corresponded to the water flux variation. However, when the floc was accumulated on the membrane surfaces, the efficiency of NaOCl cleaning was substantially limited. In addition, dynamic contact angle became greater after cleaning, which indicates changes in characteristics of fouling layer such as surface hydrophobicity. Proper cleaning technologies during enhanced backwash using NaOCl would expand application of PTFE membranes in drinking water systems.

막증류 공정의 전처리 공정으로서 천연 제올라이트 컬럼 적용 (Scalants removal from synthetic RO brine using natural zeolite)

  • 정성필;정하윤;윤택근;이석헌
    • 상하수도학회지
    • /
    • 제30권3호
    • /
    • pp.279-284
    • /
    • 2016
  • Membrane distillation (MD) is the thermally driven water separation process based on the vapor pressure difference across the membrane. In order to increase the water recovery of the conventional RO process, the additional MD-PRO pocess was suggested. In this study, the syntheric RO brine was used as a feed solution of the MD process. Due to the high salinity of the RO brine, the MD membrane could be fouled by the scalants. In order to mitigate the scaling on the MD membrane surface, the pre-treatment process using the column filled by natural zeolite was applied. The roughing filter was installed between the pre-treatment process and MD system in order to prevent possible particulate fouling by the debries of the natural zeolite. Moreover, in order to enhance the CEC of the natural zeolite, the NaCl soaking was conducted. The flux and electronic conductivity were monitored under given experimental conditions. And the membrane morphology and the chemical compositions were analyzed by using the SEM-EDX.

산 첨착활성탄과 동적막 공정을 이용한 수중 암모니아 제거 (Removal of Ammonia in Water using Acid-impregnated Activated Carbon and Dynamic Membrane System)

  • 최원경;신동호;이용택
    • 공업화학
    • /
    • 제17권3호
    • /
    • pp.310-316
    • /
    • 2006
  • 본 연구에서는 수중 악취의 원인 물질인 용존 암모니아를 제거하기 위해 분말형태의 활성탄을 사용하였다. 특히, 일반적인 분말활성탄은 암모니아 흡착능이 좋지 않기 때문에 흡착능을 높이기 위해 분말활성탄의 표면을 산 용액으로 함침시킨 산 첨착활성탄을 제조하였다. 이렇게 제조한 산 첨착활성탄을 섬유 재질로 된 다공성 지지막($10{\sim}50{\mu}m$)의 표면에 압력에 의한 분리 활성 여과 층을 형성시켜 흡착과 분리를 동시에 할 수 있는 혼합 공정을 구성하였다. 그 결과 혼합공정에서 암모니아 제거율이 60% 이상 되어, 일반 분말활성탄에 비해 10~15% 더 높은 흡착능을 보였다. 그리고 층이 형성된 동적막의 순수투과성능 실험을 보면 수투과도는 400~700 LMH로 정밀여과(Microfiltration)막 수준의 역할을 한다. 이는 수처리에서 기존의 분리막 공정보다 고효율적인 처리 유량을 유지하는 효과가 기대된다.