• Title/Summary/Keyword: Fosthiazate

Search Result 22, Processing Time 0.022 seconds

Selection of Trunk Injection Pesticides for Preventive of Pine Wilt Disease, Bursaphelenchus xylophilus on Japanese Black Pine (Pinus thunbergii) (곰솔(Pinus thunbergii)에서 소나무재선충병 예방을 위한 나무주사용 약제선발)

  • Lee, Sang-Myeong;Kim, Dong-Soo;Lee, Sang-Gil;Park, Nam-Chang;Lee, Dong-Woon
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.267-274
    • /
    • 2009
  • This study was carried out to select effective preventive pesticides against pine wilt disease caused by pinewood nematode (PWN), Bursaphelenchus xylophilus on trunk injection. 1,000 fold aquatic solution of abamectin 1.8% EC and emamectin benzoate 2.15% EC were lower mortality (7.3% and 8.3% respectively) against PWN on 1 day after treatment. However effects of abamectin 1.8% EC, emamectin benzoate 2.15% EC, fosthiazate 30% SL and fenitrothion 30% SL were inhibited the reproduction of PWN over 99.6% in Botrytis cineria media. Effect of trunk injection of abamectin 1.8% EC and emamectin benzoate 2.15% EC at the rate of $10\;m{\ell}$ per 10 cm in diameter of breast height (DBH) on mortality of Japanese black pine, Pinus thungergii by inoculated PWN was 0% and 3.3%, respectively at the applied year however when injection of fosthiazate 30% SL were treated with the rate of $5\;m{\ell}$ per 10 cm tree DBH, mortality of tree was 63.3%. Abamectin 1.8% EC and emamectin benzoate 2.15% EC was showed high preventive efficacy representing >90% against PWN at the following year. PWN preventing efficacy of trunk injection was lower in naturally occurred area (mortality of pine tree in control was 11.7% at the first year) of PWN than artificially infected site (mortality of pine tree in control was >76.7% at the first year), PWN preventing efficacy of trunk injection of abamectin 1.8% EC and emamectin benzoate 2.15% EC at the rate of $10\;m{\ell}$ per 10 cm in DBH was 91.5% and 82.9%, respectively, at the applied year and 89.5% and 82.6% respectively at the following year in PWN naturally occurred site. Control efficacy by trunk injection of abamectin 1.8% EC and emamectin benzoate 2.15% EC was more higher in 10 fold dilution with 10 fold high amount of aquatic solution than no dilution with 10 fold less amount of aquatic solution. The preventive effect of trunk injection of abamectin 1.8% EC and emamectin benzoate 2.15% EC at the rate of $5\;m{\ell}$ per 10 cm in DBH was showed 100% at the applied year in PWN inoculated tree.

Control Effect of Root-knot Nematode (Meloidogyne incognita) by Biological Nematicide (생물학적 살선충제의 뿌리혹선충 (Meloidogyne incognita) 방제 효과)

  • Park, Moon-Hyun;Walpola, Buddhi Charana;Kim, Sun-Joong;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.162-168
    • /
    • 2012
  • An nematophagous fungi Arthrobotrys thaumasia Nema-1 and Bacillus subtilis C-9, which degrade the collagen and gelatin, were isolated from horticulture plantation soil in Kyungpook Sungju-gun Seonnam-myun and Chungnam Gongju-gun Woosung-myun to develop biological nematode pesticide. When $5,000mg\;kg^{-1}$ of A. thaumasia Nema-1 nematicide powder ($7.0{\times}10^3cfu\;g^{-1}$) was treated to pot including Meloidogyne incognita, the number of nematode's egg mass, which is a index of nematicidal activity, decreased to 35% compared to control. While the number of nematode's egg mass decreased to 67% by treating the nematicide powder mixture of $5,000mg\;kg^{-1}$ Nema-1 and B. subtilis C-9 ($8.5{\times}10^5cfu\;g^{-1}$). Furthermore the number of nematode's egg mass of the mixture containing cinnamon extract $10mg\;kg^{-1}$, each $5,000mg\;kg^{-1}$ of Nema-1 and C-9 nematicide powder was decreased to 84%, comparing to the result showed the number of nematode's egg mass decreased to 24%, by the treatment of chemical nemato pesticide Fosthiazate $24mg\;kg^{-1}$. These results suggested the mixture of microorganisms and plant extract was more effective biological nematicide than the case of only microorganism or plant extract for nematode control.

Control Effect of Sudan Grass on Root-Knot Nematode, Meloidogyne incognita, in Cucumber and Lettuce Greenhouses (오이와 상추 재배지에서 수단그라스를 이용한 Meloidogyne incognita의 방제 효과)

  • Kim, Hyeong-Hwan;Kim, Dong-Hwan;Yang, Chang-Yeol;Kang, Taek-Jun;Han, Kyung-Sook;Park, Hae-Woong;Jung, Young-Hak;Jeon, Sung-Wook;Song, Jin-Sun;Choo, Ho Yul
    • Research in Plant Disease
    • /
    • v.20 no.4
    • /
    • pp.264-269
    • /
    • 2014
  • The effect of biological control of the root-knot nematode, Meloidogyne incognita, on cucumber and lettuce was evaluated with green manure crop species in greenhouse. Nematicidal effect of sudan grass cultivation in cucumber greenhouse was comparable to that of chemical treatment with fosthiazate GR, showing the high activity of 88.6%. Sudan grass cultivation in lettuce greenhouse significantly reduced the number of M. incognita in soil, showing 93.5% of nematiidal activity. In addition, since growth of sudan grass was superior to other green manure crop species, it is considered that cultivation of sudan grass is proper to control M. incognita in greenhouse.

Control Effects of Imicyafos GR against Two Species of the Root-knot Nematodes (Meloidogyne incognita and Meloidogyne hapla) (살선충제 Imicyafos 입제의 2종 뿌리혹선충에 대한 방제 효과)

  • Kim, Hyeong Hwan;Jung, Young Hak;Kim, Dong Hwan;Ha, Tae Ki;Yoon, Jung Beom;Park, Chung Gyoo;Choo, Ho Yul
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.2
    • /
    • pp.101-105
    • /
    • 2015
  • Efficacy of novel nematicide, imicyafos GR was evaluated against two species of the root-knot nematodes in pot and greenhouse conditions. When tested in pots, the population of Meloidogyne incognita and M. hapla was reduced sixty days after treatment, with mortality rate of 91.5% and 90.6%, respectively. Suppression effect of imicyafos GR on root galling in tomato was tested. The number of root galls caused by M. incognita and M. hapla was reduced 60 days after nematode inoculation, with the efficacy of 94.2% and 95.1%, respectively. Under greenhouse conditions planted with watermelon, melon, cucumber, and tomato, the efficacy of imicyafos GR on M. incognita persisted up to 60 days after treatment, showing 90% of control efficacy. Moreover, the number of root galling was more reduced than fosthiazate treatment, with the potential as a control agent.

Nematicidal Effect of Root-knot Nematode (Meloidogyne incognita) by Biological Nematicide (생물학적 선충 방제제를 이용한 고구마 뿌리혹선충 (Meloidogyne incognita)의 방제효과)

  • Park, Moon-Hyun;Kim, Jin-Kwang;Choi, Won-Ho;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.228-235
    • /
    • 2011
  • An nematophagous fungi Arthrobotrys thaumasia Nema-1 and Pseudomonas putida C-5, which degrade the collagen and gelatin, was isolated from controlled horticultural soils in Seonnam-myun, Sungju-gun, Kyungpook and Woosung-myun, Gongju-shi, Chungnam to develop biological nematode pesticide. When $5,000mL\;L^{-1}$ of A. thaumasia Nema-1 culture was treated to Meloidogyne incognita, the nematicidal activity resulted in 55% at 72 hours after treatment. While the nematicidal activity increased to 65% by treating the culture mixture of $5,000mL\;L^{-1}$ Nema-1 and P. putida C-5 after 72 hours. Furthermore, the nematicidal activity of the mixture containing cinnamon extract $50mg\;L^{-1}$, each $5,000mL\;L^{-1}$ of Nema-1 and C-5 culture was elevated to 89% at 72 hours after treatment, comparing to the result showed 17% and 57% of the nematicidal activity, respectively by the treatment of chemical nemato pesticide Fosthiazate $50mg\;L^{-1}$ and neem oil $2,000mL\;L^{-1}$. These results suggested that the mixture of microorganisms and plant extract were more effective biological nematicide than the case of only microorganism or plant extract for nematode control.

Effect of Acetic and Lactic Acid Mixtures on Control of Quarantine Nematode, Bursaphelenchus xylophilus, in Exporting Cymbidium (초산과 젖산 혼합액에 의한 수출용 심비디움 검역선충 Bursaphelenchus xylophilus의 방제 효과)

  • Seo, Yunhee;Park, Jiyeong;Cho, Myoung Rae;Chun, Jae Yong;Kim, Young Ho
    • Research in Plant Disease
    • /
    • v.20 no.3
    • /
    • pp.227-233
    • /
    • 2014
  • The mixture (MX) of acetic acid (AA) and lactic acid (LA) was examined for its effectiveness in the control of the pine wood nematode Bursaphelenchus xylophilus contaminated in cymbidium culture medium. Nematode mortality in vitro was nearly 100% in AA and MX at the concentrations of 5.0-1.0% (pH 2.6 - 4.2) and in LA only at 5.0% (pH 3.5), but lowered at concentrations of 0.5-0.1% (pH 5.1-6.9) more significantly in LA than AA and MX. MX of most concentrations caused higher nematode mortality than the average response to AA and LA. All treatments of MX (0.5% and 0.25%), fosthiazate (standard and double concentrations) and culture dilution of Paenibacillus polymyxa GBR-1 ($10^7$colony-forming units/ml) reduced significantly the nematode populations in the cymbidium culture medium, compared to non-treatment control, with no significant difference among the treatments. No phytotoxicity occurred in all treatments. pH of the medium with the time after treatment and growths of 2-year-old cymbidium were not significantly different among treatments. Considering the safety and price of the organic acids, use of MX in the processes for culturing cymbidium may be a practically reliable and eco-friendly way in the control of the quarantine nematode in cymbidium.

Efficacy of Different Nematicidal Compounds on Hatching and Mortality of Heterodera schachtii Infective Juveniles

  • Kim, Jeongeun;Mwamula, Abraham Okki;Kabir, Faisal;Shin, Jin Hee;Choi, Young Hwa;Lee, Jae-Kook;Lee, DongWoon
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.293-299
    • /
    • 2016
  • Effect of nematicidal compounds on hatchability of sugar beet cyst nematode, Heterodera schachtii and its infective juveniles was investigated. The sugar beet cyst nematode was isolated from Chinese cabbage field in Samcheok in Korea. Acute toxicity of nematicidal compounds against infective juveniles was also tested to find the $LC_{50}$ by exposing juveniles to given dilutions of each compound. Hatchability and mortality of infective juveniles of H. schachtii were influenced by nematicidal compounds (Fluopyram 40% SC, imicyafos 30% SC, fosthiazate 30% SC, abamectine 1.68% SC, terthiophene, and Eclipta prostrata extract). Fluopyram and imicyafos yielded the lowest rates of hatching. Total hatched infective juveniles were significantly different among nematicidal compounds. Positive correlation in percentage reduction of hatching was observed in fluopyram. Furthermore, the highest mortality was also observed in the treatments of fluopyram and imicyafos ($LC_{50}$ of 0.0543 and 0.0178 ppm respectively). The study, therefore, demonstrated available alternative nematicidal compounds which could be used in the control of H. schachtii.

Occurrence of Root-knot Nematodes on Fruit Vegetables Under Greenhouse Conditions in Korea (과채류 시설재배지의 뿌리혹선충 문제)

  • 김동근
    • Research in Plant Disease
    • /
    • v.7 no.2
    • /
    • pp.69-79
    • /
    • 2001
  • Meloidogyne arenaria race 2 (59%) is widely distributed, followed by M. incognita race 1 (23%), and an unknown race of M. incognita (18 %) in greenhouses in southern Korea. The key character to distinguish between M. arenaria and M. incognita is excretory pore in female head. When oriental melon, Cucumis melo L., grafted on Shintozoa (Cucurbit maxima x Cu. moschata) is transplanted in February in a plastic tunnel inside a greenhouse infested with M. arenaria, nematodes produced egg masses on roots at 40 days after transplanting and the soil juveniles (J2) population reach maximum in July to 3,817/100 ㎤. Juveniles are distributed relatively uniform over the 180-cm-wide row horizontally and the highest density occurs at 0-25 cm soil depth. For the control of root-knot nematodes, rice rotation, solarization, and soil addition treatments are the most effective (P=0.05); treatments reduce number of J2 over 90% and increase yield two times. Corn retation, fosthiazate, and soil drying treatment are moderately effective, while sesame and green onion rotations are not effective. The relationship between M. arenaria and yield of oriental melon is adequately described by a linear regression model. In the test with wild Cucumis genetic sources introduced from U.S.Dept. of Agriculture (USDA), one of C.heptadactylus, two of C.anguria, two of C. anguria var. longaculeatus, nine of C. metuliferus are resistant to both species of root-knot nematodes.

  • PDF

Control of Meloidogyne incognita Using Mixtures of Organic Acids

  • Seo, Yunhee;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.450-455
    • /
    • 2014
  • This study sought to control the root-knot nematode (RKN) Meloidogyne incognita using benign organo-chemicals. Second-stage juveniles (J2) of RKN were exposed to dilutions (1.0%, 0.5%, 0.2%, and 0.1%) of acetic acid (AA), lactic acid (LA), and their mixtures (MX). The nematode bodies were disrupted severely and moderately by vacuolations in 0.5% of MX and single organic acids, respectively, suggesting toxicity of MX may be higher than AA and LA. The mortality of J2 was 100% at all concentrations of AA and MX and only at 1.0% and 0.5% of LA, which lowered slightly at 0.2% and greatly at 0.1% of LA. This suggests the nematicidal activity of MX may be mostly derived from AA together with supplementary LA toxicity. MX was applied to chili pepper plants inoculated with about 1,000 J2, for which root-knot gall formations and plant growths were examined 4 weeks after inoculation. The root gall formation was completely inhibited by 0.5% MX and standard and double concentrations of fosthiazate; and inhibited 92.9% and 57.1% by 0.2% and 0.1% MX, respectively. Shoot height, shoot weight, and root weight were not significantly ($P{\leq}0.05$) different among all treatments and the untreated and non-inoculated controls. All of these results suggest that the mixture of the organic acids may have a potential to be developed as an eco-friendly nematode control agent that needs to be supported by the more nematode control experiments in fields.

Effects of Control Methods on Yields of Oriental Melon in Fields Infested with Meloidogyne arenaria (방제방법이 땅콩뿌리혹선충 밀도와 참외 수량에 미치는 영향)

  • 김동근;최동로;이상범
    • Research in Plant Disease
    • /
    • v.7 no.1
    • /
    • pp.42-48
    • /
    • 2001
  • The effect of cultural, physical and chemical control methods on the population density of Meloidogyne arenaria second-stage juveniles (J2) and on fruit yields of oriental melon was investigated at Seongju Fruit Vegetable Experiments Station, Kyungpook province, Korea, for two years from 1999 to 2000. Crops used in a rotation prior to Oriental melon were rice, corn, sesame, and green onion. The physical methods used were either solarization, soil addition or soil drying, and a nematicide, fosthiazate of granular formula, was used as the chemical method, applying at a rate of 300g a. i./10 a. Growing rice in the rotation, solarization, and soil addition controlled the nematode disease most effectively, reducing the number of J2 by 90% and increasing fruit yields two times. However, the effects of these control methods on the J2 population were limited to the early growing season; the J2 population increased later, suggesting that additional control practices may be needed in the following season. The next effective control methods were use of corn in the rotation, the nematicide application, and soil drying. The nematicide application was effective only for the early fruit yield, but neither for the late nor for the total yields. Use of sesame or green onion in the rotation was not effective in controlling the nematode.

  • PDF