• Title/Summary/Keyword: Fos-Jun

Search Result 142, Processing Time 0.026 seconds

Effects of Nicotine and Tobacco-Specific Nitrosamine on Carcinogenesis (Nicotine 및 Tobacco-Specific Nitrosamine이 발암과정에 미치는 영향)

  • Kang, Ho-Il;Park, Mi-Sun;Kim, Ok-Hee
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.3
    • /
    • pp.118-123
    • /
    • 2005
  • Nicotine has been implicated as a potential factor in the pathogenesis of human lung cancer, however its mechanism of action in the development of lung cancer remains largely unknown. To explore the role of nicotine in the development of lung cancer, we first investigated the effects of nicotine on the expression of tumor associated genes by treating Sprague-Dawley rats with nicotine (10 mg/kg) by gavage once daily for 10 days. We determined the expression of proteins and mRNAs of the ras, raf, myc, jun, fos oncogenes and p53, Rb tumor suppressor genes by Western and Northern blotting, respectively. We did not detect any changes on the levels of proteins and mRNAs of these tumor associated genes in the lung of Sprague-Dawley rats from 3 days to 12 weeks after the last treatment of nicotine, indicating that nicotine appears to have no effect on expression of these oncogenes and tumor suppressor genes at an early stage in multistage chemical carcinogenesis. In a second experiment, we investigated the possibility that 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) could be formed endogenously by treating with nicotine and sodium nitrite. We treated groups of Fischer 344 rats with nicotine ($60{\mu}mol/kg$) and sodium nitrite ($180{\mu}mol/kg$), nicotine, sodium nitrite and NNK (120 nmol/kg) alone by gavage once daily for 7 days, respectively and determined the 8-hydroxydeoxyguanosine (8-OHdG), as an indicator of NNK formation, in the lungs of rats 24 hours and 48 hours after the last treatment by HPLC/ECD method. We detect increased level of 8-OHdG in the lungs of rats treated with NNK, but in the case of nicotine plus sodium nitrite, nicotine and sodium nitrite alone we could not detected any changes of 8-OHdG, respectively.

  • PDF

The Effects of Bee Venom Therapy on Melanoma of C57BL Mouse (봉독약침(蜂毒藥鍼)이 C57BL mouse의 흑색종(黑色腫)에 미치는 영향)

  • Oh, Gi-Nam;Lee, Jae-Dong;Park, Dong-seok
    • Journal of Acupuncture Research
    • /
    • v.19 no.2
    • /
    • pp.78-91
    • /
    • 2002
  • Objective : This study was designed to investigate the anti-cancer effects of bee venom on melanoma in C57BL mice. Materials and Methods : For the induction of melanoma, C57BL mice were treated by DMBA(7, 12-dimethylbenz[a]anthracene). Each group of C57BL mouse was treated with DMBA $50{\mu}g$, $75{\mu}g$, $100{\mu}g$ respectively once a week for 15 weeks. Tumor generation in each group of 10 mice was observed. Cumulative curves were showed in the density and frequency of skin tumor generation. To know the effects of pre-treatment of bee venom on tumor generation by DMBA treatment(frequency of tumor generation), Each group of C57BL mouse was pretreated and treated with bee venom $5{\mu}{\ell}$, $25{\mu}{\ell}$, $50{\mu}{\ell}$ respectively once a week for 3 weeks, whereafter each mouse was treated with DMBA $100{\mu}g$ once a week for 15 weeks. Results and Conclusion (1) There was chemotherapeutic effect, but not chemopreventive effect. (2) Cpp32 activity was increased by $50{\mu}{\ell}$ bee venom treatment. (3) Bee venom treatment inhibited expression of cell-cycle regulating, growth-promoting genes such as c-Jun, c-Fos, and Cyclin Dl, and increased tumor suppressors p53 and p21/Wafl. (4) Bee venom treatment activated expression of a representative apoptosis-inducing gene Bax.

  • PDF

The Amelioration Effect of the Ethanolic Extract of Cnidium officinale in Mice with Imiquimod-induced Psoriasis-like Skin Lesion

  • Lee, Yong Jun;Hong, In Kee;Kim, Hill;Heo, Seong Il;Kwon, Dong-Joo;Ahn, Won Gyeong;Kim, Young Han;Seo, Eun-Jung;Han, Sang In;Cho, Hyun-Jong;Kim, Sun Young;Yang, Heejung
    • Natural Product Sciences
    • /
    • v.24 no.1
    • /
    • pp.21-27
    • /
    • 2018
  • Psoriasis is an auto-immune skin disease, which is characterized by the excessive generation of plaques on the skin with typically a long-lasting red, itchy and scaly symptoms. Imiquimod, which has been used for the treatment of external genital warts, actinic keratosis, and superficial basal cell carcinoma, induced of psoriasis-like skin disorders with skin erythema and thickness in mice. In the present study, we tried to find the bioactive herbal extract against imiquimod-induced psoriasis-like skin disorder in mice. During the searching of the herbal extract with anti-psoriatic effect, the ethanolic extract of Cnidium officinale ameliorated imiquimod-induced psoriasis-like skin disorder in mice. The morphological evaluation, H&E staining and Psoriasis Area and Severity Index (PASI) score showed that ear and back thickness, and erythema induced by imiquimod were significantly reversed after the treatment of the cream of the ethanolic extract of C. officinale. The overexpressed myeloperoxidase (MPO) and keratin 6A levels were decreased by the treatment of C. officinale cream. Also, $IFN-{\gamma}$, c-fos and $I{\kappa}B-{\alpha}$ mRNA levels, which are related to the progression of psoriasis, were reduced by C. officinale cream. Thus, the ethanolic extract of C. officinale ameliorated psoriasis-like skin disorder induced by imiquimod and might be the therapeutic agent for psoriasis.

L1 Cell Adhesion Molecule Suppresses Macrophage-mediated Inflammatory Responses (L1 Cell Adhesion Molecule에 의한 대식세포 매개 염증반응의 억제 기전 분석)

  • Yi, Young-Su
    • YAKHAK HOEJI
    • /
    • v.60 no.3
    • /
    • pp.128-134
    • /
    • 2016
  • L1 cell adhesion molecule (L1CAM) is a cell surface molecule to initiate a variety of cellular responses through interacting with other cell adhesion molecules in a homophilic or heterophilic manner. Although its expression was found to be upregulated in some tumor cells, including cholangiocarcinomas, and ovarian cancers, and many studies have investigated the role of L1CAM in these cancers, its role in inflammatory responses has been poorly understood. In this study, we explored the role of L1CAM in macrophage-mediated inflammatory responses. L1CAM significantly suppressed the production of nitric oxide (NO), but induced cell proliferation in RAW264.7 cells. L1CAM expression was detectable, but its expression was markedly decreased by lipopolysaccharide (LPS) in RAW264.7 cells. In addition, the expression of pro-inflammatory genes, such as tumor necrosis factor (TNF)-${\alpha}$, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) induced by LPS was dramatically suppressed by L1CAM in RAW264.7 cells. L1CAM inhibited the transcriptional activities of NF-${\kappa}B$ and AP-1 while its cytoplasmic domain deletion form, $L1{\Delta}CD$ did not suppressed their activities in RAW264.7 cells. Moreover, L1CAM suppressed nuclear translocation of p65 and p50 as well as c-Jun, c-Fos and p-ATF2 which are transcription factors of NF-${\kappa}B$ and AP-1, respectively. In conclusion, L1CAM suppressed inflammatory responses in macrophages through inhibiting NF-${\kappa}B$ and AP-1 pathways.

Protective Effect of Processed Panax ginseng, Sun Ginseng on UVB-irradiated Human Skin Keratinocyte and Human Dermal Fibroblast

  • Lee, Hye-Jin;Lee, Joo-Yeop;Song, Kyu-Choon;Kim, Jin-Hee;Park, Jeong-Hill;Chun, Kwang-Hoon;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.68-77
    • /
    • 2012
  • In this study, we investigated the protective effects of processed Panax ginseng, sun ginseng (SG) against the UVB-irradiation on epidermal keratinocytes and dermal fibroblasts. Pretreatment of SG in HaCaT keratinocytes and human dermal fibroblasts reduced UVB-induced cell damage as seen by reduced lactate dehydrogenase release. We also found that SG restored the UVB-induced decrease in anti-apoptotic gene expression (bcl-2 and bcl-xL) in these cells, indicating that SG has an anti-apoptotic effect and thus can protect cells from cell death caused by strong UVB radiation. In addition, SG inhibited the excessive expression of c-jun and c-fos gene by the UVB in HeCaT cells and human dermal fibroblasts. We also demonstrated that SG may exert an anti-inflammatory activity by reducing the nitric oxide production and inducible nitric oxide synthase mRNA synthesis in HaCaT keratinocytes and human dermal fibroblasts. This was further supported by its inhibitory effects on the elevated cyclooxygenase-2 and tumor necrosis factor-${\alpha}$ transcription which was induced by UVB-irradiation in HaCaT cells. In addition, SG may have anti-aging property in terms of induction of procollagen gene expression and inhibition of the matrix metalloprotease-1 gene expression caused by UVB-exposure. These findings suggest that SG can be a potential agent that may protect against the dermal cell damage caused by UVB.

Effects of Pyrola japonica Extracts on Osteoclast Differentiation and Bone Resorption (녹제초 추출물이 파골세포 분화 및 골 흡수에 미치는 영향)

  • Park, Jung-Sik;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.29 no.2
    • /
    • pp.135-147
    • /
    • 2019
  • Objectives This study was performed to evaluate the effect of Pyrola japonica extract (NJ) and its principal constituent, homoarbutin (HA) on osteoclast differentiation and gene expression and bone resorption. The osteoclastogenesis and gene expression were determined in receptor activator of nuclear factor kappa B ligand (RANKL)-stimulated RAW264.7 cell. Methods In order to evaluate the effect of HA extracted from NJ on bone resorption, osteoclasts were used to be differentiated and formed by stimulating RAW264.7 cells with RANKL. Tartarate-resistant acid phosphatase (TRAP) (+) polynuclear osteoclast formation ability was evaluated, and differentiation control genes including cathepsin K, matrix metalloproteinases-9 (MMP-9), and TRAP in osteoclast differentiation were analyzed by real-time polymerase chain reaction (PCR). Immunoblotting was performed to measure the effect of mitogen-activated protein kinase (MAPK) factors on bone resorption, and the effect of osteoclasts on osteoclast differentiation was measured. Results Both NJ and high concentration of HA blocked RANKL-stimulated differentiation from RAW264.7 cell to TRAP-positive multinucleated cells. NJ reduced RANKL-induced expression of TRAP, cathepsin K. Both NJ and high concentration of HA inhibited RANKL-mediated expression of MMP-9, nuclear factor of activated T-cells, cytoplasmic 1, and cellular Jun-fos. NJ suppressed RANKL-stimulated expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase, tumor necrosis factor-alpha, and levels of interleukins. Both NJ and HA decreased bone resorption in osteoclast-induced bone pit formation model. Conclusions These results suggest that NJ and HA blocked bone resorption by decreasing RANKL-mediated osteoclastogenesis through down-regulation of genes for osteoclast differentiation.

Experimental Study Trends on the Acupuncture Moxibustion Treatment for Visceral Hypersensitivity: Based on the Data of PubMed (내장감각과민의 침구 치료에 대한 실험연구 현황: PubMed를 중심으로)

  • Han, Chang Woo;Choi, Jun-Yong;Park, Seong Ha;Kim, So Yeon
    • Korean Journal of Acupuncture
    • /
    • v.36 no.2
    • /
    • pp.93-103
    • /
    • 2019
  • Objectives : The aim of this study is to review the current trends in experimental studies on the acupuncture moxibustion treatment for visceral hypersensitivity. Methods : PubMed was searched for experimental studies about visceral hypersensitivity and acupuncture/moxibustion. Data were extracted and tabulated from the selected articles about experimental method, intervention, result and mechanism. Results : Total 23 articles were reviewed. Chronic visceral hypersensitivity animal model was applied in 17 studies (74%). Visceral hypersensitivity was measured by abdominal withdrawal reflex scoring or/and abdominal electromyogram. Acupoints like ST25, ST36, ST37, BL25, LI11, BL32 and PC6 were treated by electroacupuncture or moxibustion. All articles reported that electroacupuncture or moxibustion treatment is significantly effective in reducing visceral hypersensitivity. Treatment mechanisms were studied, related to mast cell, serotonin (5-HT) and receptor (5-HT3R and 5-HT4R), substance P (SP), vasoactive intestinal polypeptide (VIP), c-fos positive cell, corticotropin-releasing hormone (CRH), purinergic 2X (P2X)2, P2X3, P2X4, P2X7, N-methyl-D-aspartate (NMDA) receptor (NR1 and NR2B), prokinectin (PK) 1 and PK2. Conclusions : Evidences on acupuncture/moxibustion treatment for visceral hypersensitivity in animal studies warrant more research on effective acupoins, electro-acupuncture methods and treatment durations.

Korean Red Ginseng water extract inhibits cadmium-induced lung injury via suppressing MAPK/ERK1/2/AP-1 pathway

  • Mitra, Ankita;Rahmawati, Laily;Lee, Hwa Pyoung;Kim, Seung A.;Han, Chang-Kyun;Hyun, Sun Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.690-699
    • /
    • 2022
  • Background: Few studies reported the therapeutic effect of Korean Red Ginseng (KRG) in lung inflammatory diseases. However, the anti-inflammatory role and underlying molecular in cadmium-induced lung injury have been poorly understood, directly linked to chronic lung diseases (CLDs): chronic obstructive pulmonary disease (COPD), cancer etc. Therefore, in this study we aim to investigate the therapeutic activities of water extract of KRG (KRG-WE) in mouse cadmium-induced lung injury model. Method: The anti-inflammatory roles and underlying mechanisms of KRG-WE were evaluated in vitro under cadmium-stimulated lung epithelial cells (A549) and HEK293T cell line and in vivo in cadmium-induced lung injury mouse model using semi-quantitative polymerase chain reaction (RT-PCR), quantitative real-time PCR (qPCR), luciferase assay, immunoblotting, and FACS. Results: KRG-WE strongly ameliorated the symptoms of CdSO4-induced lung injury in mice according to total cell number in bronchoalveolar lavage fluid (BALF) and severity scores as well as cytokine levels. KRG-WE significantly suppressed the upregulation of inflammatory signaling comprising mitogen-activated protein kinases (MAPK) and their upstream enzymes. In in vitro study, KRG-WE suppressed expression of interleukin (IL)-6, matrix metalloproteinase (MMP)-2, and IL-8 while promoting recovery in CdSO4-treated A549 cells. Similarly, KRG-WE reduced phosphorylation of MAPK and c-Jun/c-Fos in cadmium-exposed A549 cells. Conclusion: KRG-WE was found to attenuate symptoms of cadmium-induced lung injury and reduce the expression of inflammatory genes by suppression of MAPK/AP-1-mediated pathway.

Effect of Toosendan Fructus on Chronic Acid Reflux Esophagitis Rats (천연자(川練子)가 만성 역류성 식도염 흰쥐에 미치는 효과)

  • Lee, Jin A;Shin, Mi-Rae;Choi, Jeong Won;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.36 no.3
    • /
    • pp.1-8
    • /
    • 2021
  • Objective : Reflux esophagitis (RE), one of gastroesophageal reflux disease (GERD), is a disease that causes inflammation due to reflux of stomach contents such as stomach acid and pepsin due to the unstable gastroesophageal sphincter, and is currently increasing worldwide. The currently used treatment for reflux esophagitis has various side effects. Therefore, in this study the effect of Toosendan Fructus extract on chronic acid reflux esophagitis in rats was evaluated in order to find a new treatment material for reflux treatment. Methods : After inducing reflux esophagitis through surgery, the group was separated and the drug was administered for 2 weeks; Normal rats (Normal, n=8), chronic acid reflux esophagitis rats (Control, n=8), Toosendan Fructus 200 mg/kg body weight/day-treated chronic acid reflux esophagitis rats (TF, n=8). After, we were taken esophageal tissue and esophageal mucosa damage was identified, and analyzed the expression of NADPH oxidase, AP-1/MAPK-related proteins, and tight junction proteins by western blot in esophageal tissue. Results : Toosendan Fructus administration significantly protected the esophageal mucosal damage of reflux esophagitis. Also, Toosendan Fructus significantly reduced the expression of NADPH oxidases (NOX2 and p22phox) and AP-1/MAPK-related proteins (c-Fos, c-Jun, p-p38, p-ERK, and p-JNK). In addition, it significantly increased the expression of tight junction proteins (Occludin, Claudin-3, and Claudin-4). Conclusions : These results suggest that Toosendan Fructus reduced damage to the esophageal mucosa by protecting the esophageal mucosa by upregulating tight junctions proteins as well as inhibiting the AP-1/MAPK pathway through reducing NADPH oxidases expression.

Hydroxychavicol Inhibits In Vitro Osteoclastogenesis via the Suppression of NF-κB Signaling Pathway

  • Sirada Srihirun;Satarat Mathithiphark;Chareerut Phruksaniyom;Pitchanun Kongphanich;Wisutthaporn Inthanop;Thanaporn Sriwantana;Salunya Tancharoen;Nathawut Sibmooh;Pornpun Vivithanaporn
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.205-213
    • /
    • 2024
  • Hydroxychavicol, a primary active phenolic compound of betel leaves, previously inhibited bone loss in vivo by stimulating osteogenesis. However, the effect of hydroxychavicol on bone remodeling induced by osteoclasts is unknown. In this study, the anti-osteoclastogenic effects of hydroxychavicol and its mechanism were investigated in receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclasts. Hydroxychavicol reduced the number of tartrate resistance acid phosphatase (TRAP)-positive multinucleated, F-actin ring formation and bone-resorbing activity of osteoclasts differentiated from RAW264.7 cells in a concentration-dependent manner. Furthermore, hydroxychavicol decreased the expression of osteoclast-specific genes, including cathepsin K, MMP-9, and dendritic cell-specific transmembrane protein (DC-STAMP). For mechanistic studies, hydroxychavicol suppressed RANKL-induced expression of major transcription factors, including the nuclear factor of activated T-cells 1 (NFATc1), c-Fos, and c-Jun. At the early stage of osteoclast differentiation, hydroxychavicol blocked the phosphorylation of NF-κB subunits (p65 and Iκβα). This blockade led to the decrease of nuclear translocation of p65 induced by RANKL. In addition, the anti-osteoclastogenic effect of hydroxychavicol was confirmed by the inhibition of TRAP-positive multinucleated differentiation from human peripheral mononuclear cells (PBMCs). In conclusion, hydroxychavicol inhibits osteoclastogenesis by abrogating RANKL-induced NFATc1 expression by suppressing the NF-κB signaling pathway in vitro.