• Title/Summary/Keyword: Forward-Link

Search Result 285, Processing Time 0.037 seconds

Forward Link Power Allocation and Capacity of IMT-2000 System (IMT-2000 시스템의 순방향 링크 전력할당과 용량유도)

  • Ro, Sang-Min;Kim, In-Kyoung;Kim, Joo-Eung;Daesik Hong;Kang, Chang-Eon;Jung, Hyun-Meen
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.117-120
    • /
    • 2000
  • This paper discusses solutions for forward link power allocation based on 3GPP(FDD) standardization reports and which meet the required Eb/No of forward link channels. In addition, the forward link user capacity in a mixed service environment. Cell coverage is induced from the user capacity solutions using the urban propagation model. In an urban macrocell environment, the forward link user capacity turns out to be roughly 29 and 3, respectively, for voice and data service (144 kbps) at a distance of 1 km, and in an urban microcell environment, the user capacity turns out to be Toughly 14, 4, and 2, respectively, for voice and two data services (144 kbps, 384 kbps) when the cell radius is 0.2 km.

  • PDF

Analysis of Forward Link Capacity for a DS/CDMA System with Multirate Traffic Sources

  • Park, Wan;Kim, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.125-128
    • /
    • 2000
  • In this paper, we derive forward link Erlang capacity reflecting both outage probability and blocking probability of each traffic type in mixed traffics environment. We firstly determine the number of available virtual trunks of the forward link from a circuit switching perspective. Then, capacity sharing model and generalized Erlang model are employed to derive joint Erlang capacity of various traffics types.

  • PDF

Link Adaptation and Selection Method for OFDM Based Wireless Relay Networks

  • Can, Basak;Yomo, Hiroyuki;Carvalho, Elisabeth De
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.118-127
    • /
    • 2007
  • We propose a link adaptation and selection method for the links constituting an orthogonal frequency division multiplexing (OFDM) based wireless relay network. The proposed link adaptation and selection method selects the forwarding, modulation, and channel coding schemes providing the highest end-to-end throughput and decides whether to use the relay or not. The link adaptation and selection is done for each sub-channel based on instantaneous signal to interference plus noise ratio (SINR) conditions in the source-to-destination, source-to-relay and relay-to-destination links. The considered forwarding schemes are amplify and forward (AF) and simple adaptive decode and forward (DF). Efficient adaptive modulation and coding decision rules are provided for various relaying schemes. The proposed end-to-end link adaptation and selection method ensures that the end-to-end throughput is always larger than or equal to that of transmissions without relay and non-adaptive relayed transmissions. Our evaluations show that over the region where relaying improves the end-to-end throughput, the DF scheme provides significant throughput gain over the AF scheme provided that the error propagation is avoided via error detection techniques. We provide a frame structure to enable the proposed link adaptation and selection method for orthogonal frequency division multiple access (OFDMA)-time division duplex relay networks based on the IEEE 802.16e standard.

Proposal of an Algorithm for an Efficient Forward Link Adaptive Coding and Modulation System for Satellite Communication

  • Ryu, Joon-Gyu;Oh, Deock-Gil;Kim, Hyun-Ho;Hong, Sung-Yong
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.80-86
    • /
    • 2016
  • This paper proposes the algorithm for forward link adaptive coding and modulation (ACM) and the detailed design for a satellite communication system to improve network reliability and system throughput. In the ACM scheme, the coding and modulation schemes are changed by as much as the channel can provide depending on the quality of the communication link. To implement the forward link ACM system in the Ka-band, channel prediction and modulation/coding decision methods are proposed and simulated. The parameters of the adaptive filter predictor based on the least mean square are optimized, the minimum mean square error of the channel predictor is 0.0608 when step size and the number of filter tap are 0.0001 and 4, respectively. A test-bed is set up to verify the forward link ACM system, and a test is performed using a Ka-band satellite (i.e., Communication, Ocean, and Meteorological Satellite [COMS]). This test verifies that the ACM scheme can increase the system throughput.

A Study on the Forward- and Reverse-Link Interrogation Range of a UHF RFID System (UHF RFID 시스템의 순방향 및 역방향 인식 거리에 관한 연구)

  • Jang, Byung-Jun;Park, Jun-Seok;Cho, Hong-Gu;Lim, Jae-Bong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1243-1253
    • /
    • 2007
  • Recently UHF RFID system has drawn a great deal of attention because of its potential to revolutionize supply chain management. An important characterization of the performance of a RFID system is 'interrogation range', which is defined as the maximum distance between a reader and a tag. Forward-link interrogation range is defined as the maximum distance from which the tag receives just enough power to turn on and back-scatter, and reverse-tink interrogation range is the maximum distance from which the reader can detect this back-scattered signal. A link balance has to be found between the two interrogation ranges. In this paper, the interrogation range equations are formulated in both forward-link and reverse-link and a trade-off between the two values is investigated in order to maximize the interrogation range. As a result, it is observed that the gain of the reader antenna, the isolation of the circulator, and the phase noise of the local oscillator with range correlation effect mainly determine the reverse-link interrogation range.

On the Performance of All-optical Amplify-and-forward Relaying with a Backup Radio-frequency Link Over Strong Atmospheric Turbulence and Misalignment Fading

  • Altubaishi, Essam Saleh
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.114-120
    • /
    • 2021
  • Free-space optical (FSO) communication is considered to be a potential solution to congestion in the radio-frequency spectrum and last-mile-access bottleneck issues in future cellular communication networks, such as 5G and beyond. However, FSO link performance may degrade significantly due to irradiance fluctuations and random temporal fluctuations from atmospheric turbulence. Therefore, in this work the main objective is to reduce the effect of the atmospheric turbulence by considering a multihop FSO communication system with amplify-and-forward relaying supported by a radio-frequency (RF) link, which form a hybrid FSO/RF communication system. The FSO link is assumed to follow the gamma-gamma fading model, which represents strong turbulence. Also, the RF link is modeled by a Rayleigh distribution. The performance of the considered system, in terms of the outage probability and average bit-error rate (BER), is investigated and analyzed under various weather conditions and pointing errors. Furthermore, the effect of the number of employed relay nodes on the performance of the system is investigated. The results indicate that the considered system reduces outage probability and average BER significantly, especially for low channel quality. Finally, the closed-form expressions derived in this work are compared to the results of Monte Carlo simulations, for verification.

Passive UHF RFID Propagation Characteristics and Reconsideration of Link budget on Practical Communication Area (수동형 UHF RFID 인터페이스에 대한 Link budget의 재해석 및 전파 환경 요소 분석)

  • Jung, Jin-Woo;Park, Kyoung-Tae;Roh, Hyoung-Hwan;Park, Jun-Seok;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.469-472
    • /
    • 2008
  • In this paper, we discuss the recent trends on the passive UHF RFID tag chip design techniques and several important system parameters. We also summarize link budget studies on both conventional and modem UHF RFID communications. The paper highlights the reverse link limited case, which has known to be the minor concern if reader continuous wave (CW) can reach the tag in sufficient level. This makes sense when the tag sensitivity is rather high (over 10-12${\mu}W$); however, since the tag chip fabrication technologies have been developed by time, the tag chip threshold levels are now less-dominant in determining link margin. If the tag limitation can be alleviated, the forward link limited case can be resolved; thus, we rather focus on the path-loss problem. Since the path-losses are still exist in both forward and reverse links, and it can be doubled while CW travels the reader-tag-reader path because forward link and reverse link are on the same distance. Consider if reader receiver sensitivity is very high in the worst case. In this case, weaken tag response (i.e., backscatters) cannot reach the level that reader receiver can process tag data; bit-error rate can be higher. Overall, backscatter levels should be high enough so that reader receiver can correctly function. After discussing link budget, we carried out practical measurements on fading effects between two circularly polarized UHF RFID antennas in a small scale area.

  • PDF

Performance of the MMSE Receiver Front-ended by CMA Array in the Mult-path Faded CDMA Forward Link.

  • Lee, Yun-Soo;Chinn, Yong-Oak
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.328-332
    • /
    • 2007
  • The structure of MMSE receiver frontended by CMA array working in CDMA forward link is proposed. By using the despreaded pilot signal of forward link as a reference signal, CMA array can capture multi-path signals securely even in severely faded mobile channel. The remaining MAl (Multiple Access Interference) is cancelled by the cascaded MMSE receiver. Through computer simulation, it is proved that the proposed system shows much better BER performance than any other systems. As a mobile based spatio-temporal receiver, the proposed system also reduces implemental cost and complexity by adopting the simplest algorithm for its spatial and temporal domain processing.

Two-Level Power and Rate Allocation Scheme on the Forward Link for Multicell CDMA Data Users (멀티셀 CDMA 데이터 사용자를 위한 순방향 링크에서의 2계층 전송출력/전송률 할당체계)

  • Chang, Kun-Nyeong;Lee, Ki-Dong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.3
    • /
    • pp.219-227
    • /
    • 2005
  • In this paper, an optimal power and rate allocation model is mathematically formulated on the forward link of multicell CDMA mobile systems. The model maximizes total utility considering data rates and fairness among cells under delay and PRER (Post RPL Error Rate) constraints. The two-level power and rate allocation scheme is suggested to solve the proposed model. Experimental results show that the proposed scheme provides a good solution in a fast time.

Rate Control Based Call Admission Control Scheme for CDMA2000 System (CDMA2000시스템에서 전송률 제어에 기반한 호 수락제어 기법)

  • Park, Hyung-Kun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9B
    • /
    • pp.771-777
    • /
    • 2004
  • In a COMA system, the capacity is variable and mainly depends on multiple access interference. The multiple access interference has a deep relationship with transmitted or received power. The capacity of COMA2000 system is considered to be limited by the forward link capacity. In this paper, we show that the forward link cell load can be represented by the total transmitted power of base station and we propose a forward link call admission control (CAC) strategy for COMA2000 system. The proposed call admission scheme adopts the rate control algorithm for data call. This call admission scheme enables the system to utilize radio resource dynamically by controlling data rate according to the cell load status, and enhance the system throughput and grade of service (GoS). quality of service(QoS) such as blocking and outage probability.