• Title/Summary/Keyword: Forward model

Search Result 1,419, Processing Time 0.031 seconds

Experimental Study on a Monte Carlo-based Recursive Least Square Method for System Identification (몬테카를로 기반 재귀최소자승법에 의한 시스템 인식 실험 연구)

  • Lee, Sang-Deok;Jung, Seul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.248-254
    • /
    • 2018
  • In this paper, a Monte Carlo-based Recursive Least Square(MC-RLS) method is presented to directly identify the inverse model of the dynamical system. Although a RLS method has been used for the identification based on the deterministic data in the closed loop controlled form, it would be better for RLS to identify the model with random data. In addition, the inverse model obtained by inverting the identified forward model may not work properly. Therefore, MC-RLS can be used for the inverse model identification without proceeding a numerical inversion of an identified forward model. The performance of the proposed method is verified through experimental studies on a control moment gyroscope.

LED Design using Resistor Network Model (저항 네트워크 모델을 통한 LED 설계)

  • Gong, Myeong-Kook;Kim, Do-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.73-78
    • /
    • 2008
  • A resistor network model for the horizontal AlInGaN LED was investigated, The parameters of the proposed model are extracted from the test dies and $350{\mu}m$ LED, The center of the P-area is the optimal position of a P-electrode by the simulation using the model. Also the optimal chip size of the LED for the new target current was investigated, Comparing the simulation and fabrication result, the errors for the forward voltage and the light power are average 0,02 V, 8 % respectively, So the proposed resistor network model with the linear forward voltage approximation and the exponential light power model are useful in the simulation for the horizontal AlInGaN LED.

One-round Protocols for Two-Party Authenticated Key Exchange (1-라운드 양자간 키 교환 프로토콜)

  • Jeong, Ik-Rae;Lee, Dong-Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.1_2
    • /
    • pp.110-118
    • /
    • 2006
  • Cryptographic protocol design in a two-party setting has of tel ignored the possibility of simultaneous message transmission by each of the two parties (i.e., using a duplex channel). In particular, most protocols for two-party key exchange have been designed assuming that parties alternate sending their messages (i.e., assuming a bidirectional half-duplex channel). However, by taking advantage of the communication characteristics of the network it may be possible to design protocols with improved latency. This is the focus of the present work. We present three provably-secure protocols for two-party authenticated key exchange (AKE) which require only a single round. Our first, most efficient protocol provides key independence but not forward secrecy. Our second scheme additionally provides forward secrecy but requires some additional computation. Security of these two protocols is analyzed in the random oracle model. Our final protocol provides the same strong security guarantees as our second protocol, but is proven secure in the standard model. This scheme is only slightly less efficient (from a computational perspective) than the previous ones. Our work provides the first provably- secure one-round protocols for two-party AKE which achieve forward secrecy.

Precise Modeling and Adaptive Feed-Forward Decoupling of Unified Power Quality Conditioners

  • Wang, Yingpin;Obwoya, Rubangakene Thomas;Li, Zhibo;Li, Gongjie;Qu, Yi;Shi, Zeyu;Zhang, Feng;Xie, Yunxiang
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.519-528
    • /
    • 2019
  • The unified power quality conditioner (UPQC) is an effective custom power device that is used at the point of common coupling to protect loads from voltage and current-related PQ issues. Currently, most researchers have studied series unit and parallel unit models and an idealized transformer model. However, the interactions of the series and parallel converters in AC-link are difficult to analyze. This study utilizes an equivalent transformer model to accomplish an electric connection of series and parallel converters in the AC-link and to establishes a precise unified mathematical model of the UPQC. The strong coupling interactions of series and parallel units are analyzed, and they show a remarkable dependence on the excitation impedance of transformers. Afterward, a feed-forward decoupling method based on a unified model that contains the uncertainty components of the load impedance is applied. Thus, this study presents an adaptive method to estimate load impedance. Furthermore, simulation and experimental results verify the accuracy of the proposed modeling and decoupling algorithm.

Development of a Runoff Forecasting Model Using Artificial Intelligence (인공지능기법을 이용한 홍수량 선행예측 모형의 개발)

  • Lim Kee-Seok;Heo Chang-Hwan
    • Journal of Environmental Science International
    • /
    • v.15 no.2
    • /
    • pp.141-155
    • /
    • 2006
  • This study is aimed at the development of a runoff forecasting model to solve the uncertainties occurring in the process of rainfall-runoff modeling and improve the modeling accuracy of the stream runoff forecasting, The study area is the downstream of Naeseung-chun. Therefore, time-dependent data was obtained from the Wolpo water level gauging station. 11 and 2 out of total 13 flood events were selected for the training and testing set of model. The model performance was improved as the measuring time interval$(T_m)$ was smaller than the sampling time interval$(T_s)$. The Neuro-Fuzzy(NF) and TANK models can give more accurate runoff forecasts up to 4 hours ahead than the Feed Forward Multilayer Neural Network(FFNN) model in standard above the Determination coefficient$(R^2)$ 0.7.

Study on The Slip Factor Model for Multi-Blades Centrifugal Fan (원심다익송풍기의 미끄럼 계수에 대한 연구)

  • GUO, En-min;KIM, Kwang-Yong;SEO, Seoung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.111-115
    • /
    • 2002
  • The objective of this work is to develop improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan by investigating the validity of various slip factor models. Both steady and unsteady three-dimensional CFD analyses were performed with a commercial code tn validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the presented model takes into account the effect of blade curvature. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peaktotal pressure coefficient.

  • PDF

Error Prediction Considering the Measurement Direction in OMM System (OMM 시스템에서 측정방향을 고려한 가공물의 오차평가)

  • 최진필;이상조;권혁동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.632-635
    • /
    • 2002
  • In this paper, a general procedure to determine machine tool errors from the on-machine measurement (OMM) data is described. First, a parameterized error model of a machine tool is illustrated by approximating error components as linear function of axis positions, and a modified error model is proposed which includes backlash effects. To determine the unknown model coefficient vectors of the forward and backward error model, an artifact with 8 cutes is made and calibrated on CMM. Then, lower-left and upper-right cube corners are measured with a touch-trigger probe mounted on the machine tool spindle. Measured error data are used to determine the coefficient vectors. The positioning errors in the XY plane at the fixed z position are simulated for the forward and backward error model.

  • PDF

Modeling of a 5-Bar Linkage Robot Manipulator with Joint Flexibility Using Neural Network (신경 회로망을 이용한 유연한 축을 갖는 5절 링크 로봇 메니퓰레이터의 모델링)

  • 이성범;김상우;오세영;이상훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.431-431
    • /
    • 2000
  • The modeling of 5-bar linkage robot manipulator dynamics by means of a mathematical and neural architecture is presented. Such a model is applicable to the design of a feedforward controller or adjustment of controller parameters. The inverse model consists of two parts: a mathematical part and a compensation part. In the mathematical part, the subsystems of a 5-bar linkage robot manipulator are constructed by applying Kawato's Feedback-Error-Learning method, and trained by given training data. In the compensation part, MLP backpropagation algorithm is used to compensate the unmodeled dynamics. The forward model is realized from the inverse model using the inverse of inertia matrix and the compensation torque is decoupled in the input torque of the forward model. This scheme can use tile mathematical knowledge of the robot manipulator and analogize the robot characteristics. It is shown that the model is reasonable to be used for design and initial gain tuning of a controller.

  • PDF

Multiple Output Forward Converter for PC Power Supply with Weighted Voltage Mode Control (가중치 전압 모드 제어를 적용한 PC 전원용 다중출력 포워드 컨버터)

  • 이경주;김성민;이득기;정종진;김흥근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.307-316
    • /
    • 2001
  • In this paper, the multiple output forward converter forPC power supply with weighted voltage mode control which improves the characteristics of DC and transient responses is analyzed and designed. The power stage model of this converter including all the major parasitic components is derived and the small signal model is also derived. Determination of the weighting factors and a design procedure for the loop compensation are presented. Finally, the proposed controller is verified through the simulation of three output forward converter with SABER, and the experiment.

  • PDF

Design of the Estimator of Forward Kinematics Solution for a 6 DOF Motion Bed (6자유도 운동재현용 베드의 순기구학 추정기 설계)

  • 강지윤;김동환;이교일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.483-487
    • /
    • 1996
  • We consider the estimation of the position and orientation of 6 DOF motion bed (Stewart platform) from the measured cylinder length. The solution of forward kinematics is not solved yet as a useful realtime application tool because of the complity of the equation with multiple solutiple solutions. Hence we suggest an algorithm for the estimation of forward kinematics solution using Luenberger observer withnonlinear error correction term. The Luenberger observer withlinear model shows that the estimation error does not go to zero in steadystate due to the linearization error of the dynamic model. Hence the linear observer is modified using nonlinear measurement error equation and we prove thd practical stability of the estimation error dynamics of the proposed observer using lyapunov function.

  • PDF